

DETOXIFICATION OF THE PHYTOALEXINS MAACKIAIN AND MEDICARPIN BY FUNGAL PATHOGENS OF ALFALFA

SCOTT SOBY,* SRIYANI CALDERA,† ROBERT BATES† and HANS VANETTEN

Departments of Plant Pathology and †Chemistry, University of Arizona, Tucson, AZ 85721, U.S.A.

(Received in revised form 8 August 1995)

Key Word Index—Cercospora medicaginis; Colletotrichum spp; Medicago sativa; Nectria haematococca; alfalfa; pterocarpan; phytoalexin detoxification.

Abstract—Nine fungal pathogens of alfalfa (Medicago sativa) (lucerne) were assayed for their ability to metabolize the pterocarpanoid phytoalexins (—) maackiain and (—) medicarpin. All of the alfalfa fungal isolates were able to metabolize both (—) maackiain and (—) medicarpin. Six different initial reaction products were observed, and often a single isolate produced multiple metabolic products. All the products have been previously described, except for those produced by Cercospora medicaginis. This fungus hydroxylated the pterocarpans at the 1a carbon to form a 1a[R]OH-dienone, in which the hydroxyl group is trans to the bridgehead protons, and is the 1a epimer of the previously described cis form of the compound. (—) Maackiain and both of the 1a hydroxylated epimers were tested for toxicity on isolates of Nectria haematococca mating population I and Saccharomyces cerevisiae that do not degrade maackiain or its 1aOH-dienone products. Both epimers were less toxic than maackiain, and the trans epimer was less toxic than the cis form.

759

INTRODUCTION

Many plants produce low molecular weight antibiotic compounds, known collectively as phytoalexins, in response to invasion and infection by microbes [1]. It has been proposed that the production of these compounds provides the plant with an active mechanism of broadspectrum defence against both fungi and bacteria [1, 2]. Many phytopathogenic fungi are able to metabolize phytoalexins to less toxic compounds, suggesting that detoxification provides one way to overcome this chemical defence [3].

Red clover (*Trifolium pratense* L.) and alfalfa (*Medicago sativa* L.) produce the pterocarpan phytoalexins (—) maackiain (1a) and (—) medicarpin (1b), respectively (Fig. 1). These compounds are structurally similar, are often produced in the same plant species, and have been proposed to be substrates for identical fungal metabolic detoxification pathways [3]. Previous work has shown that (—) maackiain (1a) and (—) medicarpin (1b) are toxic to several genera of fungal pathogens of legume and non legume hosts [4–7]. A number of species of fungi are able to metabolize (—) maackiain and (—) medicarpin by hydroxylation of the 6a [8, 9] or 1a carbons [8, 10], or opening of the dihydrofuran ring ('C') to form isoflavans [8, 10–13] (Fig. 1). In the present study we examined a group of alfalfa foliar pathogens, includ-

ing three species of Colletotrichum that are involved in the alfalfa anthracnose disease complex [14], and the root and crown pathogens Verticillium albo-atrum and Fusarium oxysporum f.sp. medicaginis for their ability to metabolize (–)medicarpin and (–)maackiain. We also describe the novel detoxification of these phytoalexins to a previously unreported epimer of the 1a-hydroxydienone by the Summer Black Stem pathogen Cercospora medicaginis.

RESULTS AND DISCUSSION

Metabolism of (-)maackiain **1a** and (-)medicarpin **1b** by alfalfa-pathogenic fungi

(-) Maackiain (1a) can be readily and abundantly purified from the roots of mature red clover plants, and was thus used in initial studies to determine the parameters for fungal metabolism. (-) Medicarpin (1b) was subsequently used as substrate to test if it is metabolized in the same way as 1a. With the exception of a tomato isolate of V. albo-atrum, which did not metabolize 1a, and Cercospora medicaginis, which made unknown products from both 1a and 1b, all the alfalfa pathogens were able to metabolize 1a and 1b to metabolic products that could be identified by comparison with spectra of known compounds or with published spectral data [8]. A summary of the fungal metabolites produced is presented in Table 1.

^{*}Author to whom correspondence should be addressed.

760 S. Soby *et al.*

Fig. 1. Fungal metabolic products of (-)maackiain and (-)medicarpin. a, $R^1 + R^2 = OCH_2O$; b, $R^1 = H$, $R^2 = OCH_3$. 1a, maackiain; 1b, medicarpin; 2a, 6a-OH-maackiain; 2b, 6a-OH-medicarpin; 3a, 1a[S]OH-maackiain; 3b, 1a[S]OH-medicarpin; 4a, 1a[R]OH-maackiain; 4b, 1a[R]OH-medicarpin; 5a, sophorol; 5b, vestitone; 6, demethylmedicarpin; 7a, dihydromaackiain; 7b, vestitol. Numbers beside the arrows indicate the fungal isolates in Table 1 that use the indicated pathway. The proposed pathway for Cercospora medicaginis (pathway 9) detoxification of maackiain (1a) is shown (1a \rightarrow 4a \rightarrow 8a \rightarrow 9a or 10a).

Three species of Colletotrichum are associated with the anthracnose disease complex of alfalfa; C. trifolii is the primary pathogen in the formation of leaf and stem lesions, and can be readily isolated from lesions early in the course of disease. There are three races of C. trifolii, which correspond to genetic resistance in cultivars of the host plant. C. dematium f. truncatum and C. destructivum do not appear to be involved in primary pathogenesis. but can be isolated from lesions late in the course of the disease [14]. All three species hydroxylated 1a and 1b at the 6a position (Fig. 1, 2), but only C. trifolii was additionally able to cause C-ring fission to produce the isoflavanones sophorol (5a) or vestitone (5b) and/or hydroxylation at the 1a position, resulting in the dienones 3a and 3b (Fig. 1). All these reactions result in less toxic compounds [7]. An additional compound produced by C. destructivum was detected by the conversion of 4-[3H]-(-)maackiain to an unknown product with an absorbance ratio ($\lambda_{max}^{EtOH} = 278:309$) of 3:2 and a polarity greater than any of the known products (data not shown), and thus is unlikely to be the result of one enzymatic modification. Since the only first-step metabolic products of la and lb in C. destructivum are the 6a-OH products 2, this unknown product may be the result of further metabolism of the 6a-OH compounds 2. While not all isolates of C. trifolii produced all possible metabolic products, it is apparent that it employs multiple metabolic pathways and that the ability to metabolize pterocarpans is independent of its race structure. These three species of *Colletotrichum* are also able to degrade medicarpin (1b) by demethylation of the methoxy group at carbon 9. The resulting product, demethylmedicarpin 6, has been shown by a number of different assays to be less toxic than 1b [15]. Demethylmedicarpin 6 has been reported to be a metabolic product of other species of *Colletotrichum* [9, 15]. Thus, species of *Colletotrichum* employ several independent methods of pterocarpan detoxification.

Stemphylium alfalfae, Phoma medicaginis and Leptosphaerulina briosiana cause disease in the stems and leaves of the host. They produce the isoflavan dihydromaackiain (7a) from (-)maackiain (1a) and S. alfalfae produces vestitol (7b) from (-) medicarpin (1b). These isoflavans have been shown to be almost as fungitoxic as the parent compounds [16,17], but 7 may be converted to other compounds in planta either by these fungi, other associated organisms, or by the host, as interconversion of isoflavans and pterocarpans has been reported in plants [3]. In the in vitro assays employed here, there did not appear to be a rapid degradation of 7. Unlike S. alfalfae and P. medicaginis, which produce only the isoflavans (7), L. briosiana was also able to produce the 1a hydroxydienone derivative 3a, which is less toxic than the parent compound.

Table 1. Initial metabolites of (-)maackiain (1a) and (-)medicarpin (1b) produced by fungal alfalfa pathogens

Species(1)	Isolate	Metabolic products				
		Maackiain	Medicarpin	Host/Source		
	Colletotrichum trifolii					
	T-456	2a,3a,5a	2b,3b,5b,6	Red clover	K. L. Leath	
	ARNLW(race 3)	2a,3a,5a	2b,3b,5b,6	Alfalfa	M. Dickman	
	SB-2(race 2)	2a,3a,5a	n.t.	Alfalfa	N. O'Neill	
	3-5(race 1)	2a,3a,5a	n.t.	Alfalfa	N. O'Neill	
	2sp2(race 1)	3a,5a	n.t.	Alfalfa	N. O'Neill	
	SB-1(race 1)	3a,5a	n.t.	Alfalfa	N. O'Neill	
(2)	C. dematium					
	T-545	2a	2b,6	Alfalfa	M. Dickman	
(3)	C. destructivum					
	385	2a	2b,6	Alfalfa	M. Dickman	
(4)	Stemphylium alfalfae		•			
	KSI	7a	7b	Alfalfa	D. Studeville	
(5)	Phoma medicaginis					
	T-430	7a	n.t.	Alfalfa	K. L. Leath	
(6)	Leptosphaerulina briosiana					
	T-452	3a	3b	T-451	Cornell U.	
	T-451	3a,7a	n.t.	Alfalfa	Cornell U.	
(7)	Verticillium alho-atrum	,				
	T-513	N.D.	6	Tomato	V. Higgins	
(8)	PLY-4	3a	3b,6	Alfalfa	F. Gray	
(9)	Cercospora medicaginis		•		•	
	SS1	4a	4b,6	Alfalfa	This work	
	DS1	4a	n.t.	Alfalfa	D. Studeville	
(10)	Fusarium oxysporum f.sp. medicaginis					
	P/2	3a	3b	Alfalfa	ATCC	

n.t., not tested.

Cornell U., teaching collection, sector from T-451.

Isolates of the root and crown pathogens F. oxysporum f.sp. medicaginis and V. albo-atrum obtained from alfalfa were able to detoxify 1a and 1b by formation of the 1a hydroxydienones 3a and 3b (Fig. 1), but a V. albo-atrum isolate from tomato was unable to metabolize these phytoalexins. Both alfalfa and tomato isolates of V. albo-atrum were able to demethylate medicarpin to form 6, but F. oxysporum f.sp. medicaginis was not.

Identification of metabolites of (-) maackiain (1a) and (-) medicarpin (1b) produced by Cercospora medicaginis

Cercospora medicaginis, a leaf-spotting fungus, grows in liquid medium as discrete mycelial spheres. (-) Maackiain (1a) added to 2-week old (mature) spheres (ca 0.5 cm diameter), was not metabolized. However, after the mycelial spheres mature (ca 0.5–1.0 cm dia.), they produce a large number of propagules that rapidly germinate to form individual hyphae. When these 'germlings' were decanted away from the mature spheres and 1a added to the decantate, the substrate was readily metabolized (Fig. 2). Recovery of 1a but no metabolites after 3 days incubation from cultures containing mycelial spheres and germlings, and lack of metabolic activity of

growth medium from which actively growing mycelium had been removed by filtration, suggest that 1a is sequestered from the detoxifying enzymes present either in the germlings or sphere mycelium by the mature spheres. In a culture containing an equal number of germlings in the absence of mycelial spheres, 2 mg of (-)maackiain is completely metabolized by 22 hr (data not shown). C. medicaginis produced three metabolic products that did not have HPLC retention times characteristic of previously identified compounds. Studies using tritiumlabelled 1a verified that these compounds are derived from (-)maackiain (1a) (Fig. 2). GC-mass spectra of the least polar compound indicated that the metabolite had an increase of 16 M, an EI-mass spectrometry fragmentation spectrum identical to the previously identified 1aOH-dienone 3a, but a slightly longer GC retention time (see experimental, [8]). The UV spectra and decomposition in base of 3a and this unknown were also identical (data not shown). However, the consistent differences in GC and HPLC retention times indicated that the product was not 3a, being slightly less polar than 3a.

Comparison of the NMR spectral data (Table 2) indicated that 3a and the least polar unknown, whose structure we propose to be 4a, Fig. 1, are stereoisomers

N.D., none detected.

762 S. Soby *et al.*

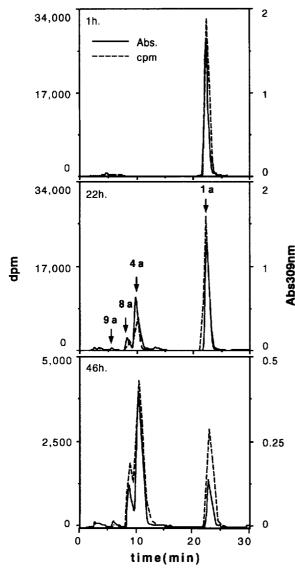


Fig. 2. HPLC separation of metabolic products of C. medicaginis. Metabolic products of $4-[^3H]$ -maackiain produced by incubation in liquid culture of C. medicaginis were collected and extracted at 1, 22 and 46 hr and separated by reversed-phase HPLC. A series of 30-s fractions were collected, the cpm were determined for each fraction and plotted with absorbance at 309 nm (λ_{max} for (-)maackiain (1a) and its metabolic products) against time of elution.

differing in configuration at C-1a, with 3a being stereochemically related to 1a-hydroxyphaseollone 11 [18] (note the similarity of chemical shifts for C-1, C-2, C-4, C-6 α , C-6 β , and C-11a and $J_{6\beta,6a}$ in 3a and 11). The 9.8-10.0 Hz values for $J_{1,2}$ in 3a [8], 4a and 11 are indicative of dienone rather than aromatic A-rings. The configurations at C-1a were assigned from the widely differing $J_{6\beta,6a}$ values (11.0 Hz in 4a and 1a; ca 0 Hz in 3a and 11) combined with molecular mechanics calculations which suggested a flatter maackiain-like conformation for 4a and a more bent conformation (in which ring B has

flipped to the other chair conformation) for 3a and 11. Thus $J_{6\beta,6a}$ is large in 1a and 4a because it is axial-axial, and small in 3a and 11 because it is not. This necessitates revising the stereochemistry tentatively assigned to 1a-hydroxyphaseollone [18] to that shown in 11. We propose that 4a produced by C. medicaginis be known as 1a[R]OH-(-)maackiain, and 3a[8] be known as 1a[S]OH-(-)maackiain, in accordance with accepted pterocarpan nomenclature [19]. While several fungi produce the 1a hydroxydienones of pterocarpans [3, 8, 10], C. medicaginis is the first fungus known to produce the 4a epimer. In the absence of NMR data or comparative HPLC studies we could not determine if the 1aOH dienone produced by Ascochyta rabiei [10] is an S or R epimer.

The proposed C. medicaginis metabolic pathway for (-) maackiain (1a) and its further detoxification products $(1a \rightarrow 4a \rightarrow 8a \rightarrow 9a \text{ or } 10a)$ is presented in Fig. 1. Structures were assigned to 4a and 8a based on HPLC, GC-mass spectrometry, NMR (summarized in Table 2) and UV spectral data, and 9a and 10a were assigned based on HPLC and GC-mass spectral data. The similarity of B-ring NMR parameters for 4a and 8a shows that 8a has the same B-ring conformation as 1a and 4a and is consistent with 8a being the 1,2-double bond reduction product of 4a. The most polar metabolic product has not been purified. However, GC-mass spectral data indicate that this compound has a molecular weight of 304 and that the C and D rings have not been altered, thus it may have one of the two proposed structures 9a or **10a** in Fig. 1. GC-mass spectral data also indicate that C. trifolii further metabolized 1a[S]OH-medicarpin 3b in the same way—that is, reduction of the 1-2 double bond, followed by reduction of the 4-4a double bond. However, our time-course studies suggest that other fungi producing the 1a-hydroxydienone are apparently incapable of further metabolism of this product. Incubation of C. medicaginis with (-) medicarpin (1b) apparently results in metabolism to $4b \rightarrow 8b \rightarrow 9b$ or 10b, as indicated by GC-mass spectrometry. C. medicaginis was also able to demethylate 1b to form demethylmedicarpin (6).

All of the fungal pathogens isolated from alfalfa were able to metabolize 1a and 1b, usually by multiple routes. The pterocarpan phaseollin is likewise subject to multiple routes of fungal metabolism [3]. This contrasts markedly with the single metabolic path used by fungi to detoxify the pterocarpanoid phytoalexin pisatin, which has only been observed to be detoxified by C-3 O-demethylation ($\rightarrow 2a$).

δ	1a	4a	8a	3a	11*
1	7.37	6.84	2.07, 2.31	6.61	6.69
2	6.55	6.17	2.31, 2.75	6.03	6.09
4	6.41	5.82	5.58	5.44	5.48
7	6.72	6.58	6.50	6.56	_
10	6.44	6.51	6.41	6.17	_
OCH,O	5.89, 5.92	5.94, 5.96	5.86, 5.88	5.82, 5.83	-
6α	4.22	4.47	4.33	5.04	5.08
6β	3.64	4.75	4.33	4.23	4.33
6a	3.47	3.87	3.87	3.86	3.91
11a	5.47	4.78	4.71	5.06	5.14
Coupling c	constants				
$J_{1,2}$	8.3	9.9	†	9.8	10
$J_{2,4}^{1,2}$	2.4	1.8	†	1.8	2
$J_{6\alpha,6\beta}$	11.1	11.0	†	11.0	10
J 62, 62	5.1 (3.4)‡	7.2 (6.0)	7.8	3.2 (4.5)	4
J _{6β,6a}	11.0 (10.9)	11.0 (8.7)	10.9	ca. (1.3)	ca. 0
J _{6a, 11a}	6.9 (6.9)	10.8 (9.1)	10.1	10.1 (9.1)	10
$J_{\text{OCH}_2\text{O}}^{0a,11a}$	1.0	1.1	1.2	1.3	_

Table 2. ¹H NMR (CDCl₃/TMS, 500 MHz) chemical shifts (δ) and coupling constants (J, in Hz) for (-)maackiain 1a and some pterocarpan metabolites

Toxicity of 1a[S]OH-maackiain (3a) and 1a[R]OH-maackiain (4a)

The antimicrobial activities of 1a, 3a and 4a were determined using an isolate of Nectria haematococca mating population I (MPI) and a haploid strain of S. cerevisiae. Neither isolate was able to metabolize maackiain. Over four experiments, the mean concentration required to inhibit colony growth of N. haematococca MPI by 50% (ED₅₀) for 1a was 16.7 μ g/ml (s.d. = 4.1), for 1a[S]OH-maackiain (3a) it was 44 μ g ml⁻¹ (s.d. = 1.4), and for 1a[R]OH-maackiain 4a it was 79.3 μ g ml⁻¹ (s.d. = 4.7). Thus the S epimer 3a was about one-third as toxic as the parent compound 1a, and the toxicity of the R epimer 4a was about one-fifth that of 1a.

S. cerevisiae was completely inhibited on YEPD agar media supplemented with $40 \mu g \, ml^{-1}$ of 1a. There was no apparent inhibition at up to $86 \mu g \, ml^{-1}$ of 3a and $150 \, \mu g \, ml^{-1}$ of 4a, the maximum concentrations tested. Metabolites 3a and 4a are considerably less toxic to both N. haematococca MPI and S. cerevisiae than the parent compound. The reduced toxicity of 4a relative to 3a may also be due to the B-ring conformation of 4a which results in a more planar molecule than either its 1aOH epimer 3a or the parent compound 1a.

EXPERIMENTAL

Chemicals. 1a was obtained from the roots of mature red clover plants as previously described [4, 20], and

dissolved in dehydrated EtOH at a concn of 4 mg ml⁻¹ for use as a stock for all assays. 1b was kindly provided by the Samuel Roberts Noble Foundation, Ardmore, OK, U.S.A. 4-[3H]-Maackiain (4.1 Ci mol⁻¹) was prepared by solvent exchange (G. DiCenzo, method to be published elsewhere). Samples for NMR were obtained by incubating 4 mg of 1a overnight in C. medicaginis liquid culture. The culture medium was extracted 2× with equal volumes EtOAc, evapd and redissolved in 2 ml EtOH for HPLC purification using a C-18 reversed phase preparative column (250 × 22.5 mm) with a 30-90% acetonitrile gradient as the mobile phase. Frs containing the unknown compounds were extracted 2x with equal volumes EtOAc, EtOAc was removed under reduced pressure, and resuspended in ²H-CHCl₃. Approximately 75% of la was converted to 4a, 20% to 8a and the remainder to 9a/10a (see Fig. 2 for example).

Fungal cultures. Colletotrichum trifolii, Colletotrichum dematium, f. truncatum, Colletotrichum destructivum, Stemphylium alfalfae, Phoma medicaginis, var. medicaginis, Cercospora medicaginis, Nectria haematococca, mating population (MP) VI isolate 156-30-6, Leptosphaerulina briosiana, Verticillium albo-atrum, and Fusarium oxysporum, f.sp. medicaginis, were maintained on V-8 juice agar slants [21]. Nectria haematococca MPI isolate T-488 was maintained on Martin's peptone-glucose agar (M-2) [4] S. cerevisiae haploid strain AAY1048 was maintained on YEPD agar (1% yeast extract, 2% bacto-peptone, 2% dextrose, 2% agar). Cercospora

^{*}Data are from [18].

[†]Not clear in spectrum.

[‡]Values (in parentheses) for minimum energy conformation were determined by the Karplus equation using the PCMODEL software package.

764 S. Soby *et al.*

medicaginis was isolated from foliar lesions from alfalfa plants collected near Manhattan, Kansas.

Metabolism assays. Fungal cultures for metabolic studies were inoculated into glucose-asparagine liquid medium (GA) from fresh V-8 agar slant cultures and grown with shaking at 180 RPM at room temp. Propagules from non-sporulating cultures were produced by grinding mycelium harvested from V-8 agar plates. 2 mg (–)Maackiain (1a) from a 4 mg ml⁻¹ EtOH stock solution was added to 100 ml actively growing cultures. Control cultures received a comparable amount of EtOH solvent. Aliquots, 30 ml, of the culture were taken at 4, 12 and 22 hr and extracted $2 \times$ with equal volumes EtOAc. For (–)medicarpin assays, 1b was added to a 10 ml aliquot of culture prepared as described above at a concentration of $10 \mu \text{g ml}^{-1}$ and the entire culture extracted as above at the time point indicated by the la experiments as the optimal time for detection of metabolic products (typically 12 or 22 hr). The EtOAc extract was then evapd under reduced pressure and redissolved in EtOH for HPLC, UV or GC-MS. In order to confirm that previously unidentified compounds were products of pterocarpan metabolism, 4-[3H]-maackiain diluted to a final specific activity of 280 mCi mol⁻¹ (10 µg ml⁻¹ final concentration (-)maackiain) was added to 5 ml culture and extracted as above. Cpm were determined by collecting 30 s HPLC fractions and then correlated to time of HPLC elution.

Chromatography. Samples were applied to silica gel TLC and resolved with toluene–EtOAc 3:2 or separated by HPLC reversed-phase chromatography on a C-18 column with a 34–100% acetonitrile gradient as the mobile phase. Absorbance was measured at 309 and 278 nm for 1a and its metabolites, and at 304 and 287 nm for 1b and its metabolites.

Spectroscopy. Individual fluorescent bands from TLC or HPLC absorbance peak fractions were collected and the samples scanned for UV as orbance ($\lambda = 240-360 \text{ nm}$). The presence of previously identified compounds [8] was confirmed and the molecular ion and fragmentation patterns of unknown compounds were determined by GC-EI mass spectroscopy using split injection into a crosslinked 5% phenylmethyl silicone column with helium carrier gas at 70 to 300° (2° min⁻¹) (70 eV). **1a**, ret. time 15.02 min: m/z (rel. int.) 284 [M]⁺ (100), 283 (29), 267 (14), 197 (6), 175 (8), 162 (16), 151 (10), 147 (9), 134 (16), 115 (6). **1b**, ret. time 14.16 min: m/z (rel. int.) 270 [M]⁺ (100), 255 (40), 253 (7.9), 148 (21), 147 (12), 137 (7.5), 135 (7.3), 134 (5.4), 133 (5.3), 91 (3.3). **3a**, ret. time 13.65 min.; **3b**, ret. time 15.00 min., EIMS see [8]. 4a, ret. time 13.79 min: m/z(rel. int.) 300 [M]⁺ (100), 218 (22), 176 (30), 175 (68), 163 (16), 162 (21), 161 (8), 133 (13), 69 (12), 54 (17), 53 (20). **4b**, ret. time 15.08 min: m/z (rel. int...) 286 [M]⁺ (17), 270 (8), 163 (11), 162 (100), 161 (77), 148 (20), 147 (10), 137 (11), 133 (18), 108 (18), 91 (7). 8a, ret. time 16.53 min: m/z (rel. int.) 302 [M]⁺ (74), 176 (52), 175 (100), 164 (17), 163 (27), 162 (17), 151 (12), 133 (23), 93 (9), 69 (24), 53 (23), 8b, ret. time 15.32 min: m/z (rel. int.) 288 [M]⁺ (47), 164 (13), 163 (7), 162 (33), 161 (100), 149 (16), 133 (17), 121 (12), 91 (9). **9a** or **10a**, ret. time 15.18 min: m/z (rel. int.) 304 [M]⁺

(100), 258 (7), 218 (7), 188 (16), 176 (16), 175 (32). 163 (46), 162 (9), 167 (6), 147 (6), 133 (12). **9b** or **10b**, ret. time 13.77 *m. m/z* (rel. int.) 290 [M]⁺ (17), 163 (15), 162 (100), 148 (59), 121 (28), 91 (8).

Toxicity studies. The relative toxicities of maackiain (1a), 1a[S]OH-maackiain (3a) and 1a[R]OH-maackiain (4a) were determined using a previously described assay [4]. Briefly, a 4 mm dia. plug of actively growing N. haematococca MPI was placed on the surface of 1 ml M2 medium in a 35 mm Petri plate containing various concns of the above compounds. The concn of the 1a[R]OH-maackiain epimer (4a) and the metabolite 8a were assumed to be the same as 3a (coefficient of extinction $(Abs_{309}) = 0.1261 \mu \text{mol ml}^{-1}$, unpublished data). Daily measurements of the mycelial front were made and per cent inhibition determined relative to growth on unamended medium. Toxicity of the three compounds was determined in S. cerevisiae by suspending a colony in water and spotting $10 \mu l$ (ca 10^4 cfu) of the suspension into the centre of a 35 mm Petri plate containing various concentrations of the test compounds. The plates were incubated at 32° for 24 hr and the treatments were scored as either allowing growth or not.

Acknowledgements—This work was funded in part by a Samuel Roberts Nobel Foundation cooperative research award. We thank G. DiCenzo for the gift of 4-[3H]Maackiain, Nancy Paiva and Jack Blount at Samuel Roberts Noble Foundation for (—) medicarpin, and Don Studeville of Kansas State University for supplying plant tissue and Cercospora medicaginis cultures, and Mark Malcomson of the University of Arizona Department of Chemistry mass spectroscopy facility.

REFERENCES

- Anderson, A. J. (1991) in Mycotoxins and Phytoalexins (Sharma, R. P. and Salunkhe, D. K. eds), p. 569. CRC Press, Boca Raton.
- Ingham, J. (1982) in *Phytoalexins* (Bailey, J. A. and Mansfield, J. W., eds), p. 21. Blackie, Glasgow.
- VanEtten, H. D., Matthews, D. E. and Smith, D. A. (1982) in *Phytoalexins* (Bailey, J. A. and Mansfield, J. W., eds), p. 181. Blackie, Glasgow.
- Delserone, L. M., Matthews, D. E. and Van Etten, H. D. (1992) Phytochemistry 31, 3813.
- Duczek, L. J. and Higgins, V. J. (1976) Can. J. Bot. 54, 2620.
- 6. Perrin, D. R. and Cruickshank, I. A. M. (1969) Phytochemistry 8, 971.
- 7. Denny, T. P. and VanEtten, H. D. (1981) Physiol. Plant Pathology 19, 419.
- 8. Denny, T. P. and Van Etten, H. D. (1982) *Phytochemistry* 21, 1023.
- 9. Ingham, J. L. (1976) Pytochemistry 15, 1489.
- Kraft, B., Schwenen, L. Stockl, D. and Barz, W. (1987) Arch. Microbiol. 147, 201.

- 11. Higgins, V. J. (1975) Physiol. Plant Pathology 6, 5.
- 12. Weltring, K.-M. and Barz, W. (1980) Z. Naturforschung 35, 399.
- 13. Weltring, K.-M., Barz, W. and Dewick, P. M. (1983) *Phytochemistry* **22**, 2883.
- 14. Graham, J. H., Devine, T. E. and Hanson, C. H. (1976) *Phytopathology* **66**, 538.
- Higgins, V. J. and Ingham, J. L. (1981) Phytopathology 71, 800.
- Bonde, M. R., Millar, R. L. and Ingham, J. L. (1973) *Phytochemistry* 12, 2957.

- 17. Krämer, R. P., Hindorf, H., Jha, H. C., Kallage, J. and Zilliken, F. (1984) *Phytochemistry* 23, 2203.
- 18. van Den Heuvel, J., Van Etten, H. D., Serum, J. W., Coffen, D. L. and Williams, T. H. (1974) *Phytochemistry* 13, 1129.
- 19. Sicherer, C. A. X. G. F. and Sicherer-Roetman, A. (1980) *Phytochemistry* 19, 485.
- 20. VanEtten, H. D., Matthews, P. S. and Mercer, E. H. (1983) *Phytochemistry* 22, 2291.
- VanEtten, H. D. and Stein, J. I. (1978) Phytopathology 68, 1276.