



# TRITERPENES AND TRITERPENOID GLYCOSIDES FROM THE LEAVES OF ILEX KUDINCHA

MING-AN OUYANG, CHONG-REN YANG,\* ZI-LI CHEN† and HAN-QING WANG‡

Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China; \*Kunming Institute of Botany, Academia Sinica Kunming, Yunnan, China; †Department of Chemistry, Jinan University, Guangdong, China

(Received in revised form 24 July 1995)

**Key Word Index**—*Ilex kudincha*; Aquifoliaceae;  $\alpha$ -kudinlactone;  $\beta$ -kudinlactone;  $\gamma$ -kudinlactone; pomolic acid; triterpenoid glycoside.

**Abstract**—Two new triterpenes,  $\alpha$ - and  $\beta$ -kudinlactone, and six new triterpenoid glycosides, kudinosides D-G, I and J, were isolated from the leaves of *Ilex kudincha*. Their structures have been elucidated by spectroscopic and chemical means.

## INTRODUCTION

Ilex kudincha C. J. Tseng is widely used as a traditional beverage in southern China. It is also used in popular medicines and in commercial herbal preparations as a stimulant to the central nervous system, a diuretic, a treatment for sore throats, an aid to losing weight and for the relief of hypertension [1, 2]. Many species belonging to different families and genera [3] are used as its original materials. This paper reports the isolation and elucidation of the structures of two triterpenes (1 and 2) and seven triterpenoid glycosides (4–10).

# RESULTS AND DISCUSSION

The ethanol- $H_2O$  (7:1) extract from the leaves of the title plant afforded two new triterpenes (1 and 2) and six new triterpenoid glycosides, kudinoside D (4), E (5), F (6), G (7), I (9) and J (10), and a known compound kudinoside H (8).

The molecular formula of  $\beta$ -kudinlactone (1) was determined as C<sub>30</sub>H<sub>46</sub>O<sub>5</sub> on the basis of its mass ([M]<sup>+</sup> at m/z 486) and <sup>13</sup>C NMR DEPT spectra. The IR spectrum exhibited absorption bands at 3400 (OH), 1730 (C=O, ester) and 1640 (C=C) cm<sup>-1</sup>. The <sup>13</sup>C NMR DEPT spectrum (Table 1) revealed 30 carbon signals: seven methyls, nine methylenes, four methines and ten quaternary carbons. When  $\beta$ -kudinlactone (1) and two known triterpene compounds [4, 5] were compared, it became apparent that  $\beta$ -kudinlactone was an ursolic acid derivative. The signals at  $\delta$ 78.2 (C-3), 66.2 (C-12), 74.4 (C-19) and 85.7 (C-20) were shifted significantly downfield by 20–40 ppm, which indicated that these carbons may be connected with oxygen atoms. C-3 ( $\delta$ 78.2), C-12

( $\delta$ 66.2) and C-19 ( $\delta$ 74.4) were clearly three alcoholic carbons. The orientation of the hydroxyl groups was shown to be  $\beta$  in the case of C-3 and C-12 and  $\alpha$ - in the case of C-19 by means of a NOESY experiment and a consideration of the data in the literature [4, 6, 7]. The C-20 ( $\delta$ 85.7) and C-28 ( $\delta$ 175.4) signals confirmed the presence of a hexacyclic lactone, which the carbonyl absorption band in the IR spectrum (1730 cm<sup>-1</sup>) strongly suggested had a  $\delta$ -lactone ring [7–10]. The <sup>13</sup>C NMR spectrum indicated two olefinic carbons  $\lceil \delta 137.6 \pmod{18}$ and 146.6 (C-13)] which were shown to be quaternary carbons by DEPT, and which were ascribed to a tetra substituted double bond. In COLOC experiments, characteristic cross-peaks were observed between the quaternary carbon C-4 and H-23, H-24, H-2 and H-5; between the quaternary carbon C-10 and H-25, H-1, H-5, H-6 and H-9; between the quaternary carbon C-13 and H-12 and H-15; between the quaternary carbon C-18 and H-12 and H-16 and also between C-19 and H-30, and between C-20 and H-19 (Fig. 1). Thus, the signals due to C-13, C-18, C-19 and C-20 were assigned. The data for  $\beta$ -kudinlactone (1) compared with that of two known triterpenes, pomolic acid [4] and 27-desoxyphillyrigenin [5], and the results of the detailed analysis of <sup>1</sup>H and <sup>13</sup>C NMR spectra with the aid of <sup>1</sup>H-<sup>1</sup>HCOSY, <sup>13</sup>C-<sup>1</sup>HCOSY and COLOC spectra, established that 1 must be  $3\beta$ ,12 $\beta$ ,19 $\alpha$ -trihydroxyurs-13 (18)-en-28,20 $\beta$ -lactone. The stereostructure of 1 is shown in Fig. 2.

α-Kudinlactone (2) was assigned the molecular formula  $C_{30}H_{44}O_4$  by mass ([M]<sup>+</sup>at m/z 468) and  $^{13}C$  NMR (Table 1) spectroscopy. The IR spectrum showed absorption bands at 3380 (OH), 1735 (C=O, ester) and 1630 (C=C) cm<sup>-1</sup>, and  $^{13}C$  NMR-DEPT revealed 30 carbon signals:  $CH_3 \times 7$ ,  $CH_2 \times 8$ ,  $CH \times 5$ ,  $C \times 10$ . The  $^{1}H$  NMR spectrum of 2 suggested the presence of a *cis*-disubstituted olefinic proton [δ7.50 (dd,

Kudinoside D(4):

$$Ara = \frac{3}{3} Glc$$
 $R_1$ 
 $R_1$ 
 $R_1$ 
 $R_1$ 
 $R_2$ 
 $R_1$ 
 $R_2$ 
 $R_3$ 
 $R_4$ 
 $R_4$ 

J=2.8 and 10.2 Hz, H-11) and 5.78 (d, J=10.7 Hz, H-12)]. Comparison of the <sup>13</sup>C NMR spectral data for **2** with those of **1** showed that the chemical shifts for C-11, C-12, C-9, C-13, C-25, C-26 and C-27 were changed. The change was due to its stereostructure and conjugated double bond. Thus, **2** was identified as  $3\beta$ -19 $\alpha$ -dihydroxyurs-11(12),13(18)-en-28,20 $\beta$ -lactone.

On acid hydrolysis using 8%  $H_2SO_4$ , 9 and 10 furnished  $\beta$ -kudinlactone and  $\alpha$ -kudinlactone, respectively, and the same sugar, arabinose. The absolute configuration of the monosaccharide was determined to be L, by HPLC analysis. On comparison of the  $^{13}C$  NMR data for 1 with that for 9, the downfield shift of the C-3 signal (+10.9 ppm) in 9 indicated that the sugar moiety was connected to the C-3 hydroxyl group of  $\beta$ -kudinlactone. Thus, 9 was identified as 3-O- $\alpha$ -L-arabinopyranosyl- $\beta$ -kudinlactone. The corresponding data for 10 showed

that this compound was  $3-O-\alpha$ -L-arabinopyranosyl- $\alpha$ -kudinlactone.

On negative ion FAB-mass spectroscopy 4 gave a quasi-molecular ion peak [M]<sup>-</sup> at m/z 908, corresponding to  $C_{47}H_{72}O_{17}$ . The IR spectrum indicated the presence of a hydroxyl (3400 cm<sup>-1</sup>) group, a carboxyl (1730 cm<sup>-1</sup>) group, and a carbon-carbon double bond (1641 cm<sup>-1</sup>). On cellulase treatment, 4 gave  $\alpha$ -kudinlactone as the aglycone ( $C_{30}H_{44}O_4$ , quasi-molecular ion peak at m/z 468 [M]<sup>+</sup> in the EI mass spectrum) and a mixture of arabinose, glucose and rhamnose (1:1:1). The absolute configuration of the monosaccharides were determined to be L, D and L, respectively, by HPLC analysis.

In the <sup>1</sup>H NMR spectrum (in pyridine- $d_5$ ) of 4, one anomeric proton signal for an L-arabinopyranose moiety was observed at  $\delta 4.74$  (1H,  $d_1$ ,  $d_2$  = 5.4 Hz, C-1-H of Ara),

|          | C  | 1       | 9     | DEPT            | 2     | 10    | DEPT            |
|----------|----|---------|-------|-----------------|-------|-------|-----------------|
| Aglycone | 1  | 39.2    | 39.2  | CH <sub>2</sub> | 38.5  | 38.1  | CH <sub>2</sub> |
|          | 2  | 28.3    | 28.6  | $CH_2$          | 28.0  | 28.1  | $CH_2$          |
|          | 3  | 78.2    | 89.1  | CH              | 78.1  | 88.6  | CH              |
|          | 4  | 39.5    | 39.8  | C               | 39.5  | 39.6  | C               |
|          | 5  | 56.1    | 56.3  | СН              | 55.3  | 55.1  | CH              |
|          | 6  | 18.7    | 18.8  | $CH_2$          | 18.7  | 18.3  | $CH_2$          |
|          | 7  | 35.6    | 35.8  | $CH_2$          | 33.1  | 32.8  | $CH_2$          |
|          | 8  | 41.8    | 42.1  | C               | 42.3  | 42.2  | C               |
|          | 9  | 45.0    | 45.1  | CH              | 54.7  | 54.4  | CH              |
|          | 10 | 37.6    | 37.6  | C               | 37.1  | 36.6  | C               |
|          | 11 | 28.9    | 28.9  | $CH_2$          | 127.3 | 127.2 | CH              |
|          | 12 | 66.2    | 66.6  | CH              | 128,6 | 128.4 | CH              |
|          | 13 | 146.4   | 146.6 | C               | 140.8 | 140.7 | C               |
|          | 14 | 43.9    | 44.3  | C               | 42.3  | 42.2  | C               |
|          | 15 | 28.9    | 29.3  | $CH_2$          | 25.9  | 25.6  | $CH_2$          |
|          | 16 | 26.3    | 27.0  | $CH_2$          | 26.4  | 26.1  | $CH_2$          |
|          | 17 | 44.1    | 44.6  | C               | 43.9  | 43.8  | C               |
|          | 18 | 137.6   | 137.6 | C               | 135.2 | 135.0 | C               |
|          | 19 | 74.4    | 74.5  | C               | 74.2  | 74.1  | C               |
|          | 20 | 85.7    | 86.3  | C               | 86.0  | 85.9  | C               |
|          | 21 | 28.4    | 28.6  | $CH_2$          | 28.6  | 28.4  | $CH_2$          |
|          | 22 | 32.9    | 32.9  | $CH_2$          | 33.0  | 32,8  | $CH_2$          |
|          | 23 | 28.8    | 28.5  | $CH_3$          | 28.5  | 27.6  | $CH_3$          |
|          | 24 | 16.7    | 17.2  | $CH_3$          | 16.1  | 16.1  | CH <sub>3</sub> |
|          | 25 | 16.5    | 16.9  | $CH_3$          | 18.5  | 18.3  | CH <sub>3</sub> |
|          | 26 | 18.3    | 18.5  | $CH_3$          | 16.6  | 16.4  | $CH_3$          |
|          | 27 | 23.5    | 23.8  | CH <sub>3</sub> | 18.7  | 18.5  | CH <sub>3</sub> |
|          | 28 | 175.4   | 176.2 | C               | 175.2 | 175.2 | C               |
|          | 29 | 25.3    | 25.6  | CH <sub>3</sub> | 23.8  | 23.5  | $CH_3$          |
|          | 30 | 19.5    | 19.8  | CH <sub>3</sub> | 19.6  | 19.4  | $CH_3$          |
| Sugar    | 1  | C-3-Ara | 107.6 | CH              |       | 107.5 | CH              |
|          | 2  |         | 73.1  | CH              |       | 72.8  | CH              |
|          | 3  |         | 74.8  | CH              |       | 74.5  | CH              |
|          | 4  |         | 69.7  | CH              |       | 69.5  | CH              |
|          | 5  |         | 66.8  | $CH_2$          |       | 66.7  | $CH_2$          |

along with the anomeric proton signals for a D-glucopyranose moiety at  $\delta$ 5.14 (1H, d, J = 7.7 Hz, C-1-H of Glc) and an L-rhamnopyranose moiety at  $\delta$ 6.40 (1H, brs, C-1-H of Rha). Furthermore, in the <sup>13</sup>C NMR spectrum, three anomeric carbon signals were observed at  $\delta$ 105.3 (1-C of Ara), 104.9 (1-C of Glc) and 102.0 ( $J_{C-H}$  = 170.2 Hz, 1-C of Rha). The  $J_{C-H}$  value indicated that the anomeric configuration of the terminal sugar (L-rhamnopyranose) was  $\alpha$  [3].

A NOESY experiment on 4 showed the presence of characteristic cross-peaks between signals at  $\delta$ 4.74 (C-1-H of Ara) and 3.34 (C-3-H of aglycone), between  $\delta$ 4.74 (C-1-H of Ara) and 6.40 (C-1-H of Rha), and between  $\delta$ 5.14 (C-1-H of Glc) and 4.23 (C-3-H of Ara).

Based on the foregoing evidence, the chemical structure of 4 has been concluded to be  $3-O-\beta$ -D-glucopyranosyl-(1-3)-[ $\alpha$ -L-rhamnopyranosyl (1-2)]- $\alpha$ -L-arabinopyranosyl- $\alpha$ -kudinlactone.

Compound 5 gave a quasi-molecular ion peak  $[M-1]^-$  at m/z 1069, corresponding to  $C_{53}H_{82}O_{22}$ , in its negative FAB mass spectrum. The <sup>1</sup>H and <sup>13</sup>C NMR

spectra showed characteristic signals for an  $\alpha$ -kudin-lactone glycoside containing arabinopyranose, rhamnopyranose and glucopyranose moieties (Table 2). The IR spectrum showed significant absorption bands due to a hydroxyl (3427 cm<sup>-1</sup>) group, a carboxyl (1730 cm<sup>-1</sup>) group and a carbon–carbon double bond (1641 cm<sup>-1</sup>).

Acid hydrolysis of 5 with 7%  $\rm H_2SO_4$  afforded  $\alpha$ -kudin-lactone along with L-arabinose, D-glucose and L-rhamnose (1:2:1) as determined by HPLC analysis. Furthermore, in the  $^{13}$ C NMR spectrum glycosylation shifts were observed for the C-2 (Glc) signal ( + 9.2 ppm) and the C-1 (Glc) signal ( - 1.6 ppm) of the glucosyl moiety (Glc), demonstrating that the glucopyranosyl group was located at C-2-OH of glucose. It had been presumed that 5 was the C-2 (Glc) glucoside of 4. Comparison of the sugar moiety of 5 and that of 3 showed the same oligosaccharide sequence. Thus, the chemical structure of 5 was  $3\text{-}O\text{-}\beta\text{-}D\text{-}glucopyranosyl-(1-2)-}\beta\text{-}D\text{-}glucopyranosyl-(1-3)-}[\alpha\text{-}L\text{-}rhamnopyranosyl-(1-2)-}]-\alpha\text{-}L\text{-}arabinopyranosyl-(1-2)-}A\text{-}cudinlactone.}$ 

$$R_1$$
 $R_2$ 
 $R_2$ 
 $R_3$ 
 $R_4$ 
 $R_4$ 
 $R_5$ 
 $R_6$ 
 $R_7$ 
 $R_8$ 
 $R_8$ 
 $R_9$ 
 $R_9$ 
 $R_{10}$ 
 $R_{20}$ 
 $R_{2$ 

Fig. 1. The results of COLOC for 1.

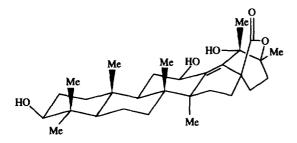



Fig. 2. Stereostructure of 1.

Compound 6 gave a quasi-molecular ion peak at m/z 926 [M]<sup>-</sup>, which corresponded to  $C_{47}H_{74}O_{18}$ , in the negative FAB mass spectrum. The IR spectrum showed a similar absorption pattern to that of 4. On acid hydrolysis with 7%  $H_2SO_4$ , 6 provided an aglycone, which was identical to  $\gamma$ -kudinlactone, and a mixture of L-arabinose, D-glucose and L-rhamnose (1:1:1) as determined by HPLC analysis.

By comparison of the <sup>13</sup>C NMR data for **6** with that for **4**, it was shown that **6** contains the same oligosaccharide sequence as **4** (Table 2).

A COLOC experiment on **6** exhibited two characteristic cross-peaks between the signal assignable to the proton of the methine at H-11 ( $\delta$ 4.95) and the signal assignable to the quaternary carbons at C-8 ( $\delta$ 43.1) and C-10 ( $\delta$ 37.4). Thus, the aglycone of **6** was the new triterpene,  $3\beta$ ,11 $\beta$ ,19 $\alpha$ -

trihydroxyurs-13(18)-en-28,20 $\beta$ -lactone ( $\gamma$ -kudinlactone). Consequently, the chemical structure of **6** has been determined as 3-O- $\beta$ -D-glucopyranosyl (1-3)-[ $\alpha$ -L-rhamnopyranosyl(1-2)-]- $\alpha$ -L-arabinopyranosyl- $\gamma$ -kudinlactone.

Compound 7 was shown to have the elemental composition of C<sub>53</sub>H<sub>86</sub>O<sub>22</sub> by FAB mass spectroscopy and DEPT. The IR spectrum showed absorption bands due to a hydroxyl (3472 cm<sup>-1</sup>) group, an ester (1734 cm<sup>-1</sup>) group and a carbon-carbon double bond (1637 cm<sup>-1</sup>). On acid hydrolysis with 7% H<sub>2</sub>SO<sub>4</sub>; 7 provided an aglycone, which was identical to pomolic acid along with a mixture of L-arabinose, D-glucose and L-rhamnose (1:2:1), as determined by HPLC analysis. Alkaline hydrolysis of 7 with aqueous lithium hydroxide afforded compound 11, which the <sup>13</sup>C NMR data showed to contain the same oligosaccharide sequence as 4 or 6 (Table 2), and D-glucose as determined by HPLC analysis, thus demonstrating that a  $\beta$ -D-glucopyranosyl group was located at the C-28 of pomolic acid. The chemical structure of 7 was, therefore, 28-O- $\beta$ -D-glucopyranosyl-pomolic acid 3-O- $\beta$ -D-glucopyranosyl(1-3)- $\lceil \alpha$ -L-rhamnopyranosyl(1-2)- $\rceil$ - $\alpha$ -L-arabinopyranoside.

### **EXPERIMENTAL**

NMR: 400 MHz, pyridine- $d_5$ , chemical shifts ( $\delta$ ) expressed in ppm with solvent as ext. standard. The NMR experiments included <sup>1</sup>H NMR, <sup>13</sup>C NMR, <sup>1</sup>H-<sup>1</sup>H COSY,

Table 2. <sup>13</sup>C NMR data for compounds 4-7 (400 MHz, pyridine-d<sub>5</sub>)

|    |       |       |       |       |        |     | ·     |       |       |       |
|----|-------|-------|-------|-------|--------|-----|-------|-------|-------|-------|
| С  | 4     | 5     | 6     | 7     | Sugar  |     | 4     | 5     | 6     | 7     |
| 1  | 38.4  | 38.5  | 39.1  | 39.2  | 3-Ara  | C-1 | 105.3 | 105.2 | 105.2 | 104.8 |
| 2  | 28.3  | 28.6  | 29.5  | 26.8  |        | 2   | 74.4  | 74.5  | 74.0  | 74.7  |
| 3  | 88.5  | 88.4  | 88.9  | 88.4  |        | 3   | 82.3  | 82.8  | 82.5  | 82.4  |
| 4  | 39.6  | 39.7  | 39.9  | 39.7  |        | 4   | 68.4  | 69.5  | 68.3  | 68.2  |
| 5  | 55.2  | 55.6  | 56.3  | 56.2  |        | 5   | 65.0  | 65.8  | 65.1  | 64.9  |
| 6  | 18.7  | 18.6  | 18.6  | 18.8  | Glc    | C-1 | 104.9 | 103.1 | 104.9 | 104.7 |
| 7  | 33.0  | 33.0  | 35.5  | 33.6  |        | 2   | 75.0  | 84.5  | 75.1  | 75.1  |
| 8  | 42.2  | 42.3  | 43.1  | 40.6  |        | 3   | 78.1  | 78.4  | 78.2  | 78.3  |
| 9  | 54.6  | 54.6  | 50.6  | 47.9  |        | 4   | 71.7  | 71.0  | 71.6  | 71.6  |
| 10 | 37.1  | 37.2  | 37.7  | 37.2  |        | 5   | 78.6  | 78.5  | 78.7  | 78.6  |
| 11 | 127.3 | 127.3 | 71.5  | 24.2  |        | 6   | 62.5  | 62.5  | 62.5  | 62.4  |
| 12 | 128.5 | 128.6 | 33.7  | 128.6 | GLc    | C-1 |       | 106.3 |       |       |
| 13 | 140.8 | 140.9 | 144.1 | 139.4 |        | 2   |       | 76.2  |       |       |
| 14 | 42.2  | 42.3  | 45.8  | 42.2  |        | 3   |       | 78.3  |       |       |
| 15 | 25.9  | 26.0  | 27.5  | 28.4  |        | 4   |       | 70.7  |       |       |
| 16 | 26.3  | 26.4  | 27.0  | 26.3  |        | 5   |       | 78.9  |       |       |
| 17 | 43.8  | 43.9  | 46.5  | 48.8  |        | 6   |       | 62.1  |       |       |
| 18 | 135.2 | 135.0 | 135.7 |       | Rha    | C-1 | 102.0 | 101.2 | 102.1 | 102.0 |
| 19 | 74.2  | 74.2  | 74.3  | 72.8  |        | 2   | 72.4  | 72.5  | 72.4  | 72.5  |
| 20 | 85.9  | 86.1  | 85.8  | 42.3  |        | 3   | 72.5  | 72.6  | 72.5  | 72.6  |
| 21 | 28.5  | 28.7  | 29.5  | 26.7  |        | 4   | 74.0  | 74.0  | 74.1  | 74.0  |
| 22 | 32.9  | 33.0  | 32.8  | 38.0  |        | 5   | 70.2  | 69.9  | 70.5  | 70.2  |
| 23 | 28.0  | 27.9  | 28.4  | 28.3  |        | 6   | 18.4  | 18.4  | 18.8  | 18.7  |
| 24 | 16.2  | 16.6  | 17.3  |       | 28-GLc | C-1 |       |       |       | 96.0  |
| 25 | 18.4  | 18.4  | 17.1  | 15.9  |        | 2   |       |       |       | 73.7  |
| 26 | 16.6  | 16.7  | 18.9  | 17.5  |        | 3   |       |       |       | 79.0  |
| 27 | 18.7  | 18.8  | 22.1  | 24.7  |        | 4   |       |       |       | 71.4  |
| 28 | 175.4 | 175.5 | 176.0 | 177.3 |        | 5   |       |       |       | 79.3  |
| 29 | 23.7  | 23.8  | 27.0  | 27.2  |        | 6   |       |       |       | 62.6  |
| 30 | 19.4  | 19.6  | 20.5  | 16.8  |        |     |       |       |       |       |
|    |       |       |       |       |        |     |       |       |       |       |

 $^{13}$ C- $^{1}$ H COSY, DEPT, COLOC and NOESY. IR: KBr discs. The FAB MS: ZAB-HB mass spectrometer; CC: silica gel (60–300 mesh); LPLC: silica gel (10–40  $\mu$ m); TLC: Silica gel F<sub>254</sub> coated glass plates using (1) hexane-Me<sub>2</sub>CO (2:1) for compounds 1 and 2 and (2) CHCl<sub>3</sub>-MeOH (10:1) for their glycosides 9 and 10. Detection: spraying with 10% H<sub>2</sub>SO<sub>4</sub> reagent, followed by heating (105°, 5 min), reddish-purple colour.

Plant material. Fresh leaves of I. kudincha C. J. Tseng were collected at Yin de, Guangdong Province, China, in July 1992. The plant was identified by Prof. Zi-li Chen. A voucher specimen (No. ICN-34248) is deposited in the Department of Biology, Jinan University. The samples were dried in the dark at room temp. and then coarsely powdered before extraction.

Extraction and isolation. The leaves (5 kg) were extracted (×3) with 70% EtOH (×3) under reflux for 8 hr at 70°. The extract was concd in vacuo to yield a dark green residue (500 g) which was suspended in cool water and extracted with Et<sub>2</sub>O, EtOAc and n-BuOH, respectively. The CHCl<sub>3</sub> layer was conc in vacuo, and the extract (80 g) subjected to CC on silica gel eluting with hexane (Fr. I) followed by hexane Me<sub>2</sub>CO mixts of increasing polarity: 9:1 (Fr. II), 4:1 (Fr. III), 7:3 (Fr. IV), 3:2 (Fr. V), 1:1 (Fr. VI). Frs IV and V, containing compounds 1 and 2,

over sepd by LPLC (silica gel,  $10-40 \,\mu\text{m}$ ) with hexane–Me<sub>2</sub>CO (2:1) to give 1 (50 mg) and 2 (20 mg). The EtOAc portion (10 g) was chromatographed on silica gel (200–300 mesh) with CHCl<sub>3</sub> and CHCl<sub>3</sub>–MeOH (20:1-10:3). The frs were collected. From Frs 8 and 9 [CHCl<sub>3</sub>–EtOH (10:1-5:1)] 9 (20 mg) and 10 (15 mg) were obtained.

The *n*-BuOH extract was subjected to TSK gel G 3000S CC (eluting with  $H_2O \rightarrow MeOH$ ), silica gel CC [eluting with CHCl<sub>3</sub>-MeOH- $H_2O$  10:3:0.5  $\rightarrow$  CHCl<sub>3</sub>-MeOH- $H_2O$  7:3:0.5  $\rightarrow$  CHCl<sub>3</sub>-MeOH- $H_2O$  65:35:9), and reversed-phase HPLC (ODS, eluting with MeOH- $H_2O$  7:3 and MeOH- $H_2O$  9:1) to afford 4 (45 mg), E (63 mg), F (35 mg), G (80 mg) and H (22 mg)].

β-Kudinlactone (1). Powder, molecular formula: 486 (C<sub>30</sub>H<sub>46</sub>O<sub>5</sub>); IR  $\nu_{\text{max}}^{\text{KBr}}$  cm<sup>-1</sup>: 3450–3200 (OH), 1730 (C=O, ester), 1640 (C=C); EIMS m/z: 486 [M]<sup>+</sup>; <sup>1</sup>H NMR (pyridine- $d_5$ ) δ (ppm): 0.93 (H-24), 0.93 (H-26), 1.03 (H-25), 1.24 (H-23), 1.50 (H-30), 1.59 (H-27), 1.65 (H-29), 3.45 (1H, dd, J = 4.4, 11.2 Hz, H-3), 0.96 (1H, H-5), 2.18 (1H, H-9), 5.92 (1H, H-12); <sup>13</sup>C NMR: Table 1.

 $\alpha$ -Kudinlactone (2). Amorphous powder, molecular formula:  $C_{30}H_{44}O_4$ ; EIMS m/z: 468 [M]<sup>+</sup>; <sup>1</sup>H NMR (pyridine- $d_5$ )  $\delta$  (ppm): 0.86 (H-26), 0.94 (H-25), 1.01 (H-24),

1.03 (H-27), 1.22 (H-23), 1.52 (H-30), 1.68 (H-29), 3.45 (1H, dd, J = 4.2, 11.5 Hz, H-3), 0.88 (1H, br s, H-5), 1.91 (1H, H-9), 7.51 (1H, dd, J = 2.7, 10.0 Hz, H-11), 5.83 (1H, d, J = 10.5 Hz, H-12);  $^{13}$ C NMR: Table 1.

Kudinoside (9). Amorphous powder; molecular; 618 (C<sub>35</sub>H<sub>54</sub>O<sub>9</sub>); IR  $v_{\text{max}}^{\text{KBr}}$  cm<sup>-1</sup>: 3500–3200 (OH), 1728 (C=O, ester), 1639 (C=C); FABMS m/z: 625 [M + Li]<sup>+</sup>, 641 [M + Na]<sup>+</sup>, 475 [M + Li - H<sub>2</sub>O - pentose]<sup>+</sup>, 413 [M + Li - H<sub>2</sub>O - pentose - CO<sub>2</sub>]<sup>+</sup>; <sup>1</sup>H NMR (pyridine- $d_5$ ): δ0.89 (H-25), 0.92 (H-26), 0.97 (H-24), 1.29 (H-23), 1.52 (H-30), 1.64 (H-29), 1.65 (H-27), (each 3H, s, CH<sub>3</sub>), 3.33 (1H, dd, J = 4.02 Hz, 11.66 Hz, H-3), 0.84 (1H, H-5), 2.19 (1H, d, J = 12.4 Hz, H-9), 5.96 (1H, br s, H-12), 4.78 (1H, d, J = 7.0 Hz, C-1-H of Ara); <sup>13</sup>C NMR: Table 1.

*Kudinoside* (10). Powder, molecular formula: 600 (C<sub>35</sub>H<sub>52</sub>O<sub>8</sub>); FAB-MS m/z: 607 [M + Li]<sup>+</sup>, 613 [M + 2Li - H]<sup>+</sup>, 563 [M + Li - CO<sub>2</sub>]<sup>+</sup>; <sup>1</sup>H NMR (400 MHz, pyridine- $d_5$ ): δ0.83 (H-26), 0.89 (H-24), 0.92 (H-25), 1.04 (H-27), 1.15 (H-23), 1.52 (H-30), 1.68 (H-29), 3.34 (1H, dd, J = 4.5, 11.6 Hz, H-3), 0.86 (1H, H-5), 2.02 (1H, H-9), 7.50 (1H, dd, J = 2.8, 10.2 Hz, H-11), 5.78 (1H, d, J = 10.7 Hz, H-12). 4.77 (1H, d, J = 7.0 Hz, C-1-H of Ara); <sup>13</sup>C NMR (400 MHz): Table 1.

Kudinoside D (4). Mp 276–279°,  $C_{47}H_{72}O_{17}$ . IR  $v_{\rm mar}^{\rm mar}$  cm<sup>-1</sup>: 3500–3100 (OH), 2940 (C-H), 1730 (C=O), 1641 (C=C), 1454, 1360, 1070, 1030; FAB-MS m/z: 908 [M]<sup>-</sup>, 745 [M - 1 - 162]<sup>-</sup>, 701 [M - 1 - 162 - CO<sub>2</sub>], 599 [M - 1 - 162 - 146]<sup>-</sup>, 555 [M - 1 - 162 - 146 - CO<sub>2</sub>]<sup>-</sup>; 423 [M - 1 - 162 - 146 - 132 - CO<sub>2</sub>]<sup>-</sup>; <sup>1</sup>HNMR δ:0.83 (3H, s, CH<sub>3</sub>), 0.89 (3H, s, CH<sub>3</sub>), 0.92 (3H, s, CH<sub>3</sub>), 1.04 (3H, s, CH<sub>3</sub>), 1.15 (3H, s, CH<sub>3</sub>), 1.52 (3H, s, CH<sub>3</sub>), 1.68 (3H, s, CH<sub>3</sub>), 3.34 (1H, dd, J = 4.5, 11.6 Hz, H-3), 0.86 (1H, br s, H-5), 2.02 (1H, br s, H-9), 7.50 (1H, dd, J = 2.8, 10.2 Hz, H-11), 5.78 (1H, d, J = 10.7 Hz, H-12), 4.74 (1H, d, J = 5.4 Hz, C-1-H of Ara), 5.14 (1H, d, J = 7.7 Hz, C-1-H of Glc), 6.40 (1H, C-1-H of Rha); <sup>13</sup>C NMR: Table 2.

Kudinoside E (5). Mp 267–270°, C<sub>53</sub>H<sub>82</sub>O<sub>22</sub>. IR  $\nu_{max}^{KBr}$  cm<sup>-1</sup>: 3500–3100 (OH), 2940 (C-H), 1730 (C=O), 1641 (C=C), 1450, 1360, 1070; FAB-MS m/z: 1069 [M – 1]<sup>-</sup>, 907 [M – 1 – 162]<sup>-</sup>, 745 [M – 1 – 2×162]<sup>-</sup>, 599 [M – 1 – 2×162 – 146]<sup>-</sup>, 555 [M – 1 – 162 – 146 – CO<sub>2</sub>]<sup>-</sup>, 467 [M – 1 – 2×162 – 146 – 132]<sup>-</sup>, 423 [M – 1 – 2×162 – 146 – 132] – 423 [M – 1 – 2×162 – 146 – 132 – CO<sub>2</sub>]<sup>-</sup>; <sup>1</sup>H NMR δ0.85 (3H, s, CH<sub>3</sub>), 0.88 (3H, s, CH<sub>3</sub>), 0.93 (3H, s, CH<sub>3</sub>), 1.06 (3H, s, CH<sub>3</sub>), 1.13 (3H, s, CH<sub>3</sub>), 1.50 (3H, s, CH<sub>3</sub>), 1.65 (3H, s, CH<sub>3</sub>), 4.75 (1H, d, J = 7.0 Hz, C-1-H of Ara), 5.15 (1H, d, J = 7.7 Hz, C-1-H of Glc), 5.23 (1H, d, J = 7.8 Hz, C-1-H of Glc), 6.42 (1H, C-1-H of Rha); <sup>13</sup>C NMR: Table 2.

Kudinoside F (6). Mp 270–274°,  $C_{47}H_{74}O_{18}$ . IR  $v_{max}^{KBr}$  cm<sup>-1</sup>: 3450–7200 (OH), 1730 (C=O), 1640 (C=C), 1450, 1380, 1070, 1040; FAB-MS m/z: 926 [M]<sup>-</sup>, 863 [M – 1 – H<sub>2</sub>O – CO<sub>2</sub>]<sup>-</sup>, 763 [M – 1 – 162]<sup>-</sup>, 701 [M – 1 – H<sub>2</sub>O – CO<sub>2</sub> – 162]<sup>-</sup>, 555 [M – 1 – H<sub>2</sub>O – CO<sub>2</sub> – 162 – 146]<sup>-</sup>, 485 [M – 1 – 162 – 146 – 132]<sup>-</sup>, 423 [M – 1 – H<sub>2</sub>O – CO<sub>2</sub> – 162 – 146 – 132]<sup>-</sup>; <sup>1</sup>H NMR δ0.80 (3H, s, CH<sub>3</sub>), 0.88 (3H, s, CH<sub>3</sub>), 1.08 (3H, s, CH<sub>3</sub>), 1.19 (3H, s, CH<sub>3</sub>), 1.27 (3H, s,

CH<sub>3</sub>), 1.56 (3H, s, CH<sub>3</sub>), 1.78 (3H, s, CH<sub>3</sub>), 3.26 (1H, dd, J = 4.2, 11.3 Hz, H-3), 0.70 (1H, d, J = 10.4 Hz, H-5), 2.32 (1H, br s, H-9), 4.95 (1H, dd, J = 2.3, 6.4 Hz, H-11), 4.87 (1H, d, J = 5.4 Hz, C-1-H of Ara), 5.08 (1H, d, J = 7.6 Hz, C-1-H of Glc), 6.14 (1H, br s, C-1-H of Rha), 1.63 (3H, d, J = 5.9 Hz, C-6-H of Rha); <sup>13</sup>C NMR: Table 2.

Kudinoside G (7). Mp 228–232°,  $C_{53}H_{86}O_{22}$ . IR  $v_{\text{max}}^{\text{KBr}}$  cm<sup>-1</sup>: 3427 (OH), 2932 (C-H), 1734 (C=O), 1637 (C=C), 1454, 1389, 1072, 1026; FAB-MS m/z: 1073 [M - 1]<sup>-</sup>, 911 [M - 162]<sup>-</sup>, 765 [M - 1 - 162 - 146]<sup>-</sup>, 749 [M - 1 - 2 × 162]<sup>-</sup>, 603 [M - 1 - 2 × 162 - 146]<sup>-</sup>, 453 [M - 1 - 2 × 162 - 146 - 132 - H<sub>2</sub>O]<sup>-</sup>; <sup>1</sup>H NMR  $\delta$ 0.87 (3H, s, CH<sub>3</sub>), 1.06 (3H, d, J = 6.5 Hz, CH<sub>3</sub>), 1.12 (3H, s, CH<sub>3</sub>), 1.16 (3H, s, CH<sub>3</sub>), 1.18 (3H, s, CH<sub>3</sub>), 1.39 (3H, s, CH<sub>3</sub>), 1.70 (3H, s, CH<sub>3</sub>), 3.27 (1H, dd, J = 4.3, 11.5 Hz, H-3), 4.86 (1H, d, J = 5.4 Hz, C-1-H of Ara), 5.09 (1H, d, J = 7.7 Hz, C-1-M of Glc), 6.14 (1H, br s, C-1-H of Rha), 1.61 (3H, d, J = 6.1 Hz, C-6-H of Rha), 6.28 (1H, d, J = 8.0 Hz, C-1-H of GLc); <sup>13</sup>C NMR: Table 2.

Kudinoside H (8). Mp 214–215°,  $C_{41}H_{66}O_{13}$ . IR  $v_{max}^{KBr}$  cm<sup>-1</sup>: 3400–3100 (OH), 2928 (C-H), 1730 (C=O), 1640 (C=C), 1454, 1380, 1070, 1020; FB-MS m/z: 773 [M + Li]<sup>-</sup>, 789 [M + Na]<sup>-</sup>, 624 [M + Li - 1 - 132 - H<sub>2</sub>O]<sup>-</sup>, 450 [M + 2 × Li - 2 × H<sub>2</sub>O - 162 - 132]<sup>-</sup>; <sup>1</sup>H- and <sup>13</sup>C NMR: same as zigu-glucoside I [6].

Acid hydrolysis. The sample (9 or 10) was dissolved in 8% H<sub>2</sub>SO<sub>4</sub> and heated on a water bath at  $70^{\circ}$  for 8 h. The reaction mixt. was diluted with H<sub>2</sub>O and extracted with CHCl<sub>3</sub>.

Identification of sugar. The water layer was neutralized with 1 N NaOH and concd under red. pres. The residue was compared with standard sugars on TLC (CHCl<sub>3</sub>-MeOH-H<sub>2</sub>O-HOAc, 7:3:0.5:1; detection with spray agent: 4%  $\alpha$ -naphthol-EtOH-5% H<sub>2</sub>SO<sub>4</sub>). The result showed the presence of arabinose.

Acid hydrolysis of kudinosides D, E, F and G. The sample (Kudinoside D, E, F or G) was dissolved in 7%  $\rm H_2SO_4$  (5 ml) and refluxed on a water bath at 90° for 4 hr. The reaction mixt. was diluted with  $\rm H_2O$  and extracted with CHCl<sub>3</sub>. The water layer was neutralized with 1 N NaOH and concd in vacuo. The residue was compared with standard sugars on TLC [CHCl<sub>3</sub>-MeOH-H<sub>2</sub>O 7:3:1, lower layer 9 ml + 1 ml HOAc] and shown to consist of Ara, Glc and Rha each case

Enzymic hydrolysis of kudinoside D, E, F and G. Kudinoside D (20 mg) or E (25 mg) or C (20 mg) or G (30 mg) was dissolved in EtOH-H<sub>2</sub>O (1:9) and 0.01 M NaH<sub>2</sub>PO<sub>4</sub> buffer (pH 4.0), 5 ml each, and incubated with crude cellulase (50 mg, Sigma) for 2 week at 37°. Usual work up afforded the crude genin which was subjected to CC on silica gel column with C<sub>6</sub>H<sub>6</sub>-Me<sub>2</sub>CO (10:1.5). D and E gave α-kudinlactone (15 mg), C gave γ-kudinlactone (6 mg) and G gave pomolic acid. α-Kudinlactone, C<sub>30</sub>H<sub>44</sub>O<sub>4</sub>. IR  $\nu_{\rm max}^{\rm KBr}$  cm<sup>-1</sup>: 3300 (OH), 1730 (C=O), 1640 (C=C), 1070, 1030; EIMS m/z: 468 [M]<sup>+</sup>; <sup>1</sup>H NMR (pyridine- $d_5$ ) δ 0.86 (3H, s, CH<sub>3</sub>), 0.94 (3H, s, CH<sub>3</sub>), 1.01 (3H, s, CH<sub>3</sub>), 1.03 (3H, s, CH<sub>3</sub>), 3.45 (1H, dd, CH<sub>3</sub>), 1.52 (3H, s, CH<sub>3</sub>), 1.68 (3H, s, CH<sub>3</sub>), 3.45 (1H, dd,

J = 4.2, 11.5 Hz, H-3), 0.88 (1H, br s, H-5), 1.91 (1H, H-9), 7.51 (1H, dd, <math>J = 2.7, 10.0 Hz, H-11), 5.83 (1H, d, <math>J = 10.5 Hz, H-12).

Alkaline hydrolysis of kudinoside G giving 11. LiOH (6 mg) was added to a soln of kudinoside G (24 mg) in  $H_2O$  (3 ml). The reaction mixt, was heated with stirring at  $70^{\circ}$  for 10 hr, then cooled to ambient temp., and the solvent removed in a rotary evaporator to give a product (18 mg), which had the same oligosaccharide sequence as 4 or 6, based on a comparison of the NMR data, and D-glucose, which was determined by TLC analysis.

Acknowledgements—The authors are grateful to the staff of the Laboratory of Kunming Institute of Botany, Academia Sinica, for financial support and their valuable advice. Thanks are also due to Mr Yu-qing Lu and Guan-ping Yu for the discussion of the experiment.

#### REFERENCES

 Zhai, R. K. (1985) Iconographia Cormophytorum Sinicoru, 641 pp. Beijing Science Publishing House, Beijing.

- Jang Su Medical College (1975) in Chinese Medicine Dictionary, 1288 pp. Shanghai People Publishing House, Shanghai.
- Kasai, R., Okihara, M. and Asakawa, J. (1979) Tetrahedron 35, 1427.
- Akira, I., Mari, K. and Hiroko, M. (1987) Chem. Pharm. Bull. 35, 841.
- Manik, C. D. and Shashi, B. M. (1982) Phytochemistry 21, 2069.
- Munthiro, N., Yuji, M. and Takashi, I. (1989) Phytochemistry 28, 1479.
- 7. Takashi, K., Kazuko, Y. and Shigenobu, A. (1991) Tetrahedron 47, 7219.
- 8. Errington, S. G. and Jefferies, P. R. (1988) *Phytochemistry* 27, 543.
- 9. Wang, H. C. and Yasuo, F. (1993) Phytochemistry 33,
- Yi, D. N. and Xiu, G. X. (1985) Nuclear Magnetic Resonance Spectra, 342 pp. Shanghai People Publishing House, Shanghai.
- He, Z. D. and Yang, C. R. (1994) Phytochemistry 36, 709.