

SCROKOELZISIDE A, A TRITERPENE GLYCOSIDE FROM SCROPHULARIA KOELZII*

S. P. S. BHANDARI, RAJA ROY, P. K. AGRAWAL† and H. S. GARG‡

Medicinal Chemistry Division, Central Drug Research Institute, Lucknow 226 001; †Central Institute of Medicinal and Aromatic Plants, Lucknow 226 015, India

(Received in revised form 8 August 1995)

Key Word Index-Scrophularia koelzii; Scrophulariaceae; triterpenoid saponin; scrokoelziside A.

Abstract—Scrokoelziside A, isolated from the aerial parts of *Scrophularia koelzii* was shown to be 3-O- $\{[\alpha-L-rhamnopyranosyl-(1 \rightarrow 3), \beta-D-glucopyranosyl-(1 \rightarrow 2)]-\beta-D-fucopyranosyl-(1 \rightarrow 4)-\beta-D-glucopyranosyl}-13<math>\beta$,28-epoxyolean-11-en-23-ol, on the basis one- and two-dimensional NMR homo- and hetero-nuclear spectroscopic evidence.

INTRODUCTION

In continuation of our chemical studies on *Scrophularia* koelzii [1], we now report the isolation and structural elucidation of a triterpene glycoside, scrokoelziside A.

RESULTS AND DISCUSSION

The chloroform extract of the dried aerial parts on chromatographic purification on a silica gel column and preparative TLC yielded one glycoside, scrokoelziside A (1). The glycosidic nature of compound 1 was indicated by the broad absorption bands at 3400 and 1070 cm⁻¹ for hydroxyl groups in its infrared spectrum and many resonances in the region 61–78 ppm in its 13 C NMR spectrum. The mass spectrum of this compound was successfully determined by negative-ion FAB mass spectrometry in which the [M]⁺ peak appeared at m/z 1071, which is compatible with the molecular formula $C_{54}H_{88}O_{21}$.

The ¹H NMR spectrum (Table 1) displayed a pattern characteristic of a pentacyclic triterpene (six tertiary methyl singlets at $\delta 0.80$, 0.90, 0.93, 0.94, 1.06 and 1.31), two AB quartets (J=11.2 and 11.6 Hz) at $\delta 3.32$ and 3.73, and at $\delta 3.72$ and 4.38, respectively, and an oxymethine at $\delta 4.15$. There were two olefinic protons ($\delta 5.53$, 1H, d, J=10.4 Hz; 5.53 dd, J=10.4, 1.5 Hz) of an endocyclic disubstituted olefinic bond which indicated a Δ^{11} -oleanene skeleton [2, 3]. The sugar moiety showed in the ¹H NMR spectrum two doublets (J=6.2 Hz) for secondary methyl groups at $\delta 1.38$ and 1.73, three doublets for the anomeric protons ($\delta 5.56$, J=7.2 Hz, Glc-1; 4.89, d, J=7.5 Hz, Fuc-1; 5.24, d, J=7.5 Hz, Glc-1) indicative

of β -anomeric configuration [4] of three monosaccharides and a broad singlet ($W_{1/2} = 1.8 \text{ Hz}$) at $\delta 5.82$ attributed to H-1 of a monosaccharide (Rha) with α anomeric configuration [4]. The assignment of the methyl resonances at $\delta 1.38$ and 1.73 was based upon the fact that these exhibited their correlation with the methine resonance at δ 3.59 and 4.94 in the COSY spectrum. The cross-peak connectivity was further elucidated, which led to the assignment of the upfield methyl resonance (δ 1.38) to a fucopyranosyl and the resonance at lower field (δ 1.73) to a rhamnopyranosyl residue. Many overlapping multiplets were observed between δ 3.5-5.0, the assignments of which were performed by means of two dimensional ¹H-¹H HOMOCOSY and ¹H-¹³C HETCOR spectra. The analysis of these spectral data confirmed the presence of a tetrasaccharide residue composed of two hexopyranose (2 x glucopyranose) and two 6-deoxyhexopyranose (fuc + rha) moieties in 1.

Starting with H-3 at δ 4.15, the resonances at δ 2.02 and 1.95 could be assigned to CH₂-2 which, in turn, exhibited their connectivity to CH₂-1 at δ 0.97 and 1.78. Among the olefinic methine resonances, the high-field methine resonance at δ 5.53 corresponded to H-11 as it displayed a cross-peak with H-9 at δ 2.03. The H-23 and H-28 methylene protons were assigned to the resonances at δ 3.72 and 4.38, and δ 3.32 and 3.73, respectively, related by the geminal couplings.

The methyl signals at $\delta 0.80$, 0.90, 0.93, 0.94, 1.06 and 1.31 were correlated with the 13 C NMR signals at $\delta 23.62$, 33.66, 18.70, 19.63, 12.75 and 19.90, respectively. The chemical shift values of the rest of the methylene and methine resonances could readily be established from the COSY and HETCOR spectra.

The ¹³C NMR spectrum exhibited 54 carbon signals and of these, 30 carbons accounted for the aglycone moiety while the remaining 24 carbon resonances were

^{*}CDRI Communication No. 5437.

[‡]Author to whom correspondence should be addressed.

Table 1. 13C NMR and 1H NMR spectral data for compound 1*

Atom No.	Aglycone residue†			Sugar residue†	
	13C	¹H	Atom No.	¹³ C	¹H
1	38.66 (CH ₂)	0.97, 1.78	Glucose (internal) (Glc)		
2	25.88 (CH ₂)	1.95, 2.02	1	103.97 (CH)	5.24 (1H, d,
3	82.63 (CH)	4.15 (1H, m)		,	J = 7.5 Hz
4	43.88 (C)		2	76.30 (CH)	3.91
5	47.84 (CH)	1.52	3	77.64 (CH)	4.16
6	17.71 (CH ₂)	1.50, 1.76	4	78.48 (CH)	4.37
7	31.55 (CH ₂)	1.31, 1.40	5	76.48 (CH)	3.70
8	42.05 (C)	_	6	63.19 (CH ₂)	4.05 (2H, m)
9	53.75 (CH)	2.03		se (Fuc)	` ' '
10	36.33 (C)		1	104.14 (CH)	4.89 (1H, d,
11	132.07 (CH)	5.53 (1H, dd,	_	,	J = 7.5 Hz
		J = 10.4 Hz and 1.5 Hz)	2	77.24 (CH)	4.62
12	131.75 (CH)	5.93 (1H, d,	3	84.82 (CH)	4.03
	101110 (011)	J = 10.4 Hz)	4	77.26 (CH)	4.15
13	84.75 (C)	_	5	70.53 (CH)	3.59
14	43.88 (C)	_	6	17.25 (CH ₃)	1.38 (3H, d,
15	31.09 (CH ₂)	0.89, 1.84		(3/	J = 6.2 Hz
16	25.68 (CH ₂)	1.01, 1.94	Glucose (terminal) (Glc)		
17	41.73 (C)		1	105.02 (CH)	5.56 (1H, d,
18	51.49 (CH)	1.69		()	J = 7.2 Hz
19	37.37 (CH ₂)	1.26, 1.68	2	75.98 (CH)	4.08
20	31.77 (C)		3	78.87 (CH)	4.18
21	31.55 (CH ₂)	1.27×2	4	72.06 (CH)	4.31
22	26.08 (CH ₂)	1.20, 1.49	5	77.24 (CH)	3.62
23	64.19 (CH ₂)	3.72, 4.38	6	61.37 (CH ₂)	4.25, 4.30
	(12)	(AB, q, J = 11.6 Hz)		27	(each 1H, m)
24	12.75 (CH ₃)	1.06 (3H, s)	Rhan	nose (Rha)	
25	18.70 (CH ₃)	0.93 (3H, s)	1	102.82 (CH)	5.82 (1H, broad
26	19.63 (CH ₃)	0.94 (3H, s)		` '	$s, W_{1/2} = 1.8 \text{ Hz}$
27	19.90 (CH ₃)	1.31 (3H, s)	2	72.82 (CH)	4.85
28	77.13 (CH ₂)	3.32, 3.73	3	72.62 (CH)	4.51
	. (- 12)	(AB, q, J = 11.2 Hz)	4	73.98 (CH)	4.34
29	33.66 (CH ₃)	0.90 (3H, s)	5	70.44 (CH)	4.94
30	23.62 (CH ₃)	0.80 (3H, s)	6	18.58 (CH ₃)	1.73 (3H, d,
-	(3)		-	(J = 6.2 Hz

^{*}C₅D₅N, TMS as internal standard, ppm (multiplicity).

due to four hexose residues. The 13 C NMR and DEPT spectra of 1 showed that 30 carbons of the aglycone consisted of six methyls (δ 12.75, 18.70, 19.63, 19.90, 23.62, 33.66), nine methylenes, 7 aliphatic methines, including

an oxymethine (δ 82.63), and seven quaternary carbons. There were also two olefinic methines (δ 131.75 and 132.07) for an endocyclic olefinic bond, an oxy-substituted quaternary carbon atom (δ 84.93, C-13) and an

[†]From the one-bond HETCOR spectrum and COSY spectrum.

oxy-methylene (δ 77.13, C-28) indicative of a 13 β ,28-epoxyoleanane skeleton [5]. The ¹³C NMR resonances due to the aglycone moiety were in good agreement with those of 13β ,28-epoxyolea-11-en-3 β -23-diol (16-dehydrosaikogenin G) [2, 3]. The appearance of four anomeric signals at δ 105.02, 104.14, 103.97 and 102.82, evident in the ¹³C NMR spectra and correlating with the ¹H NMR resonances at δ 5.56, 4.89, 5.24 and 5.82, respectively, in the HETCOR spectrum, further confirmed the existence of a tetrasaccharide moiety in 1 [4-6]. In addition there were 16 methine resonances between $\delta 69-82$, two hydroxymethylene resonances ($\delta 63.19$, $\delta 1.37$) and two methyl resonances (δ 17.25 and 18.58) thus supporting the existence of two hexopyranose and two 6deoxyhexopyranose residues. Both the hexopyranose residues were identified as glucopyranose whereas the 6-deoxyhexopyranose moieties were identified as fucopyranose and rhamnopyranose by analysis of the COSY spectrum [4, 7]. Moreover, on acid hydrolysis compound 1 yielded rhamnose, fucose and glucose in the ratio of 1:1:2. The anomeric configuration of both of the glucopyranose and fucopyranose units was determined as β due to: (1) the appearance of anomeric resonance as a doublet (${}^3J_{1,2} = 7.2 - 7.5 \text{ Hz}$) in the 1H NMR spectrum; (2) the ¹³C NMR chemical shift of the anomeric carbon resonances (δ 105.02, 104.14 and 103.97); and (3) the NOE cross-peaks between H-1, H-3, H-5 in the twodimensional NOESY spectrum [4, 8].

The interglycosidic linkage and sequence in the sugar chain was established by the negative ion, FAB mass spectrum together with two-dimensional NOE spectroscopy and also in view of the glycosylation effects observed in the ¹³CNMR spectrum [4, 9]. The fragment ions at m/z 925 and m/z 909 were in accord with the terminal position of the rhamnopyranose and glucopyranose in the glycosidic part of 1. The fragment ion at m/z 763 further confirmed the loss of the rhamnose and glucopyranose. Therefore, these were terminal sugar residues directly attached to the fucopyranosyl residue and in agreement with the fragment ion at m/z 619. In the two-dimensional NOESY spectrum, the cross-peaks were observed between H-1 of a terminal glucose (δ 5.56) and H-2 (δ 4.62) of the fucose moiety, and H-1 of rhamnose (δ 5.82) and H-3 (δ 4.03) of the fucose residue. The H-1 of fucose (δ 4.89) exhibited a NOESY cross peak with the H-4 (δ 4.37) of the internal glucose moiety revealing a $(1 \rightarrow 4)$ interglycosidic linkage. Observation of NOESY cross-peaks between H-3 of the aglycone ($\delta 4.15$) and H-1 of glucose (δ 5.24) led to the identification of glucose as the internal sugar involved in linking the aglycone and the 2,3-disubstituted fucopyranosyl residue. Thus, the sequence of the monosaccharide residues and their interglycosidic linkage could be deduced as $\{\beta$ -D-Glc(1 \rightarrow 2), α -L-Rha(1 \rightarrow 3)}- β -D-Fuc-(1 \rightarrow 4)-Glc, which was in full agreement with the ¹³C NMR chemical shifts. The C-2 and C-3 of the fucose were observed at δ 77.24 and δ 84.82, respectively, revealing significant deshielding (4.54 and 10.92 ppm) in comparison with the reported values for methyl- β -D-fucopyranoside [4] due to the α -effect of glycosylation [6, 9]. Moreover, analogous chemical shift values have been reported for the C-2 and C-3 of fucopyranose in 2,3-diglycosylated fucopyranosylcontaining naturally occurring glycosides [2, 3]. The C-4 of the internal glucose (δ 78.48) was also in complete accordance with the glycosidation at this position [2, 3, 6, 10].

The structure of scrokoelziside A was thus deduced to be 3-O-{[α -L-rhamnopyranosyl-(1 \rightarrow 3), β -D-glucopyranosyl-(1 \rightarrow 2)]- β -D-fucopyranosyl-(1 \rightarrow 4)- β -D-glucopyranosyl}-13 β ,28-epoxyolean-11-en-23-ol. It is notable that scrokoelziside A is similar to thapsuine A from *Verbascum thapsus* and *V. lychnitis* [11–13], ilwensisaponin 1 from *Scrophularia ilwensis* [14], mimengoside A from *Buddleia officinalis* [2] and songarosapin C from *V. songaricum* [3] and *V. nigrum* [15], as it has same aglycone and the same sugar composition but a different arrangement of sugar sequence. This is in accord with a taxonomically interesting relationship between the plants of the genera *Verbascum* and *Scrophularia* [15].

EXPERIMENTAL

Mps: uncorr. TLC: silica gel G (SISCO). Spots were visualized by spraying with 1% Ce(SO₄)₂ in 1M H₂SO₄. CC: silica gel (60–120 mesh) (SISCO). Flash CC: EF-10 (EYELA) A.S.C. silica gel (230–400 mesh). PC: Whatman paper No. 1. GC (steel column 2 m × 4 mm packed with 3% OV-225 on GC Q. FID. temp. $80-120^{\circ}$ C; N₂ at 50 ml min $^{-1}$). 1 H, 13 C and other NMR experiments were carried out in CDCl₃ and/or C₅D₅N, using TMS as int. standard. Chemical shifts were expressed in δ values. Mass spectra were recorded at 70 eV. The matrix for the FAB-MS was glycerin. The isolation and experimental conditions were same as reported earlier [1].

Extraction and Isolation. The CHCl₃ fr. (57.5 g) of the aerial parts of the plant [1] was chromatographed over silica gel G with a stepwise increase of MeOH content in CHCl₃. The residue (18.1 g) the 25–100% MeOH–CHCl₃ frs was subjected to CC over silica gel with MeOH–CHCl₃ (10–30%) gradient. The fractions eluted with MeOH–CHCl₃ (18–25%) yielded 1, which, on flash CC over silica gel (MeOH–CHCl₃, 18–19%), provided compound 1 (1.32 g) as an amorphous powder $[\alpha]_{\rm D}^{27} + 27^{\circ}$ (c 0.8; pyridine).

Scrokoelziside A (1). IR v_{max}^{KBr} cm⁻¹: 3400 (OH), 2920, 1070, FAB-MS negative-ion 3 kV, m/z (rel. int.): 1071 [M - 1]⁻ (100), 1069 (15), 927 (19), 925 (26), 909 (18), 763 (40), 619 (12); ¹H and ¹³C NMR (400 MHz: C₅D₅N): see Table 1.

Hydrolysis of compound 1. Compound 1 (50 mg) was treated with 50% methanolic HCl (10 ml for 5 hr) under reflux and worked up as usual. The aq. hydrolysate was neutralized with BaCO₃ and filtered. The filtrate was evapd under red. press. to dryness and acetylated with pyridine-Ac₂O. GC analysis showed, in comparison with reference compounds, the presence of peracetylrhamnose, peracetylfucose and peracetylglucose (1:1:2).

Acknowledgements—Thanks are due to the staff of RSIC for spectral data and the Director, CDRI for his interest in the work.

REFERENCES

- Bhandari, S. P. S., Mishra, A., Roy, R. and Garg, H. S. (1992) *Phytochemistry*, 31, 689.
- Ding, N., Yahara, N. and Nohara, T. (1992) Chem. Pharm. Bull. 40, 780.
- Seifert, K., Preiss, A., Johne, S., Schmidt, J., Lien, N., Lavaud, C. and Massiot, G. (1991) *Phytochemistry* 30, 3395.
- 4. Agrawal, P. K. (1992) Phytochemistry 31, 3307.
- Agrawal, P. K. and Jain, D. C. (1992) Progr. NMR spectrosc. 24, 1.
- Agrawal, P. K. and Bansal, M. C. (1989) in Carbon
 ¹³NMR of Flavonoids (Agrawal, P. K., ed.), p. 283.
 Elsevier, Amsterdam.
- Agrawal, P. K. and Bush, C. A. (1992) J. Carbohydr. Chem. 11, 945.

- Agrawal, P. K., Bush, C. A. and Takayama, K. (1993)
 Adv. Biophys. Chem. (Bush, C. A., ed.), Vol. 4, p. 179.

 JAI Publishers.
- Agrawal, P. K., Jain, D. C., Gupta, R. K. and Thakur, R. S. (1985) Phytochemistry 24, 2479.
- Bhandari, S. P. S., Agrawal, P. K. and Garg, H. S. (1990) Phytochemistry 29, 3889.
- De Pascual, T., Diaz, F. and Grande, M. (1980) Ann. Quim, 76c, 107.
- 12. De Pascual, T., Hernandez, J. M., Diaz, F. and Grande, M. (1982) *Ann. Quim*, **78c**, 108.
- 13. Hernandez, J. M. (1985) Quim. Ind. 31, 303.
- 14. Calis, I., Zor, M., Basaran, A. A., Wright, A. D. and Sticher, O. (1993) *Helv. Chim. Acta* **76**, 1352.
- 15. Klimek, B., Lavaud, C. and Massiot, G. (1992) *Phytochemistry* 31, 4368.