

STEROLS AND TRITERPENOIDS FROM THE CYANOBACTERIUM ANABAENA HALLENSIS

T. HAI, B. SCHNEIDER,* J. SCHMIDT and G. ADAM

Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle/S., Germany

(Received in revised form 22 May 1995)

Key Word Index—Anabaena hallensis; cyanobacterium; sterols; triterpenoids.

Abstract—The sterol pattern of the cyanobacterium Anabaena hallensis has been investigated. Several sterols and triterpenes were found for the first time in the genus Anabaena.

INTRODUCTION

Blue-green algae (cyanobacteria) constitute a large group of oxygenic photoautotrophic procaryotes [1]. Due to their ability to survive and emerge in changing and stressful habitats, they are dominant autotrophs in many ecosystems. Up to today it was known that sterols occur in almost all algae. The discovery of sterols in cyanobacteria was made in 1968 for Anacystis nidulans and Fremyella diplosiphon where only sitosterol and cholesterol were found [2], but the occurrence of other sterols in Formidium has been demonstrated [3]. More than 17 sterols were characterized for three nitrogen fixing cyanobacterial genera Anabaena, Nostoc and Nodularia [4]. Thirteen sterols were identified recently in Spirulina maxima [5]. Evidently, sterols occur in cyanobacteria only in minute amounts (below 0.03% of cell dry weight). Therefore, identification was achieved by GC-mass spectrometry and GLC. However, triterpenoids of the hopane family, mainly C₃₅ hopanepolyols, are present in several cyanobacteria strains at a level of up to 2 mg g⁻¹ dry weight, allowing structural elucidation by ¹H and ¹³C NMR [6, 7]. Consequently, to isolate hopane derivatives, amounts of biomass were used for extraction, which were insufficient for the detection of sterols [6, 7]. The cyanobacteria contain both saturated and unsaturated sterols [4]. The typical unsaturated sterols were as follows: cholesterol, isofucosterol, chondrilasterol, stigmasterol, brassicasterol, campesterol, 22-dehydrocholesterol, 24-methylcholest-7-en-3 β -o1, 24-ethylcholesta-2,5-dien-3 β -o1, 24-ethylcholest-7-en-3 β -ol and 24-ethylcholesta-5,722-trien-3 β -o1. Within several cyanobacteria up to 10 sterols of these types were found. In some strains such as Anabaena cylindrica, A. viguieri, A. solitaria, Nostoc carneum, Nodularia harveyana and Microcystis aeruginosa [4, 8, 9] the following saturated sterols were identified: 5α -cholestan- 3β -o1, 24-methyl- 5α -cholestan- 3β -o1 and 24-ethyl- 5α -cholestan- 3β -o1. Despite the fact that the blue-green algae are used as a source for nitrogen and phytohormones in agricultural crop production [10, 11], the nature of the algal promoting substances has not been studied. We expected that cyanobacteria may contain some sterols related to the precursors of brassinosteroids, a new class of plant hormones, as in the case of green algae [12].

We report here the sterol constituents of a nitrogenfixing cyanobacterium A. hallensis isolated from paddy soils of northern Vietnam.

RESULTS AND DISCUSSION

The cyanobacterium Anabaena hallensis (family Anabaenaceae) used here was isolated from an algal matter of Aphanothece, an abundant association in paddy soils of North Vietnam [13]. From this material at least six other cyanobacterial strains were recently purified (Rippka, R., personal communication). Although the unicellular strain Aphanothece pallida is the major constituent of this algal matter, in our hands only A. hallensis grew in suspension state under batch culture conditions with a continuous stream of air-CO₂ (19:1) and possessed a large growth index. Bacteriologically pure culture was obtained by discrete UV radiation plus antibiotic treatment and a selection procedure as described before [13,14]. This procedure was repeated weekly to prevent any contamination.

The cells of A. hallensis were extracted as described below. The 80% methanol fraction, probably containing polyhydroxyhopanes, was not further studied. The n-hexane fraction (2.5 g) was subjected to silica gel chromatography. The elution was carried out sequentially using mixtures of increasing polarity, first n-hexane-methylene chloride and then methylene chloride-methanol. From the fractions eluting with n-hexane-methylene chloride (1:3) and methylene

^{*}Author to whom correspondence should be addressed.

1084 T. Hai et al.

chloride, two sterol zones were obtained with R_f 0.22 and 0.32 by silica gel TLC in chloroform-methanol (99:1). These sterol fractions were analysed by GC-mass spectrometry of free and acetylated samples. This method does not permit the configuration at C-24 of the 24alkylsterols to be determined. The commonly occurring sterols in the cells of A. hallensis were identified by comparison with authentic samples and cited data [15, 16] as 5α -cholestan- 3β -o1, cholest-5-en- 3β -o1, 24ξ methylcholest-5-en-3 β -o1, 24 ξ -methyl-5 α -cholestan-3 β o1, 24ξ -ethylcholesta-5, 22-dien- 3β -o1, 24ξ -ethylcholest-5-en-3 β -o1 and 24 ξ -ethyl-5 α -cholestan-3 β -o1. These sterols were identified previously in other nitrogen-fixing cyanobacteria [4, 5]. In addition to these compounds the following were also identified: 3β -hydroxy- 24ξ -ethylcholest-5-en-7-one, 3β -hydroxy-24 ξ -ethylcholest-5-en-7one, 3β -hydroxycholest-5-en-7-one, β -amyrin, α -amyrin and 24-methylenecycloartanol. The occurrence of 7-oxosterols and the above triterpenes in cyanobacteria is reported here for the first time. 24ξ-Ethylcholest-5-en- 3β -o1, 24ξ -methylcholest-5-en- 3β -o1, 24ξ -ethylcholestan- 3β -o1, 24-methylenecycloartanol, β -amyrin and α -amyrin occurred in relatively high concentration in A. hallensis.

β-Carotene (R_f 0.68, [M]⁺ at m/z 536) and echinone (R_f 0.38, [M]⁺ at m/z 550) were eluted with n-hexanemethylene chloride (1:1). Palmitic acid was eluted from this column by methylene chloride-methanol (19:1) and further separated by silica gel TLC (R_f 0.12, [M]⁺ at m/z 256).

EXPERIMENTAL

Culture conditions. Cyanobacterium A. hallensis was isolated as described above and stored at the Algal Collection of the State University of Hanoi. The axenic culture was obtained by antibiotic treatment and UV discrete radiation as described before [13, 14]. For biomass production the cyanobacterium was fermented in 6 flasks of 5 l vol. containing 3 l BG-11 medium [17] under continuous illumination (white light, 3000 lux) and gassing with air-CO₂ (19:1) at 100 ml min⁻¹ and room temp.

Extraction and purification of sterols. The cells of A. hallensis were harvested by centrifugation. The cells (1000 g fr. wt.) were washed once with bidest and disrupted in 41 MeOH by an Ultra-Turrax (3 × 5 min). The MeOH extract was obtained by centrifugation. The extraction procedure was repeated 3x. The aq. phase remaining after concn of the combined filtrates was partitioned between CHCl₃-H₂O (1:1), CHCl₃ was evapd to dryness, and the residue was partitioned between nhexane and 80% MeOH (1:1). Sepn of the n-hexane fr. was performed using a Silica gel 40 column. The elution was performed stepwise starting with n-hexane-CH₂Cl₂ (1:1) and followed by (1:3). Then CH₂Cl₂ and CH₂Cl₂-MeOH (19:1) were used as eluents. Sterol isolation was achieved by further prep. TLC with Silica gel 60 using CHCl₃-MeOH (99:1) as solvent. The TLC zones which co-chromatographed with the standard compounds campesterol $(R_f \ 0.22)$ and β -amyrin $(R_f \ 0.32)$, after CH₂Cl₂ elution, were re-chromatographed using identical conditions. The purified frs were subjected to GC-MS with 5α -cholestane as int. standard.

Acetylation of sterols. This was performed with pyridine-Ac₂O (1:1) containing 1% 4-(dimethylamino)-pyridine at room temp.

GC-MS. GC-MS of the sterols and triterpenoids was performed on an MD 800 (Fisons); EI (70 eV); source temp. 200°; column DB-5 (15 m \times 0.32 mm, 0.25 μ m film thickness, injector temp. 250°, interface temp. 300°, carrier gas He, flow rate 0.8 ml min⁻¹, splitless injection. Temp. programme (column): 170° for 1 min then elevated to 270° within 25 grd min⁻¹, then raised to 290° at 2 grd min⁻¹.

Acknowledgements—The authors thank Prof. Dr Duong Duc Tien from the Faculty of Biology, State University of Hanoi, for taxonomical description of the strain A. hallensis, and Mrs C. Kuhnt for the GC-MS measurements. These investigations were supported by Fonds der Chemischen Industrie, Frankfurt/M.

REFERENCES

- Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M. and Stanier, R. J. (1979) J. Gen. Microbiol. 3, 1.
- Reitz, R. C. and Hamilton, J. G. (1968) Comp. Biochem. Physiol. 25, 401.
- Desouza, N. J. and Nes, W. R. (1968) Science 162, 3636.
- Kohlhase, M. and Pohl, P. (1988) Phytochemistry 27, 1735.
- 5. Rzama, A., Dufuorc, E. J. and Arreguy, B. (1994) *Phytochemistry* 37, 1625.
- 6. Simonin, P., Juergens, U. J. and Rohmer, M. (1992) Tetrahedron Letters 33, 3629.
- Rohmer, M., Bouvier-Nave, P. and Ourisson, G. (1984) J. Gen. Microbiol. 130, 1137.
- 8. Nishimura, M. and Koyama, T. (1977) Geochim. Cosmochim. Acta 41, 379.
- Patterson, G. W. (1991) in *Physiology and Biochemistry of Sterol* (Patterson, G. W. and Nes, W. D., eds), p. 118. American Oil Chemists' Society, Champaign, IL.
- 10. Venkataraman, G. S. (1980) FAO Soil Bull. 46, 150.
- Gupka, A. B. and Shukla, A. C. (1964) J. Sci. Technol., Kanpur 2, 24.
- Yokota, T., Kim, S. K., Fukui, Y., Takahashi, N., Takeushi, Y. and Takematsu, T. (1987) Phytochemistry 26, 503.
- 13. Hai, T. (1988) Ph.D. thesis. State University of Moscow (in Russian).
- Wolk, P. (1988) in Methods in Enzymology (Packer, L. and Glatzer, A. N., eds), Vol. 167, p. 83. Academic Press, London.
- 15. Itoh, T., Tami, H., Fukushima, K., Tamura, T. and Matsumoto, T. (1982) J. Chromatogr. 234, 65.
- Goad, L. J. (1991) in Methods in Plant Biochemistry,
 Vol. 7, Terpenoids (Charlwood, B. V. and Banthorpe,
 D. V., eds), p. 369. Academic Press, London.
- Rippka, R. (1988) in Methods in Enzymology (Packer, L. and Glatzer, A. N., eds), Vol. 167, p. 3. Academic Press, London.