

Phytochemistry, Vol. 41, No. 4, pp. 1163-1168, 1996 Copyright © 1996 Elsevier Science Ltd Printed in Great Britain. All rights reserved 0031-9422/96 \$15.00 + 0.00

A 3,4-SECO-8βH-FERNADIENOIC ACID AND OTHER CONSTITUENTS FROM EUPHORBIA CHAMAESYCE

REIKO TANAKA, TOMOKO IDA, SHUNJI KITA, WASUKE KAMISAKO* and SHUNYO MATSUNAGA†

Osaka University of Pharmaceutical Sciences, 2-10-65 Kawai, Matsubara, Osaka 580, Japan; *Faculty of Pharmaceutical Sciences, Mukogawa Women's University, 11-68 Kohshien-kyubancho, Hyogo 63, Japan

(Received 30 May 1995)

Key Word Index—Euphorbia chamaesyce; Euphorbiaceae; whole herb; triterpene; cycloart-23Z-en-3 β , 25-diol; 3,4-seco-8βH-ferna-4(23), 9(11)-dien-3-oic acid.

Abstract—A new seco-triterpene-dienoic acid was isolated, together with three known triterpenes, glutinol, 3β hydroxymultiflor-8-en-7-one and cycloart-23Z-en-3β, 25-diol, from the whole herb of Euphorbia chamaesyce, and the structure was established as 3,4-seco-8\(\beta\)H-ferna-4(23),9(11)-dien-3-oic acid on the basis of chemical and spectral evidence.

INTRODUCTION

Recently, we reported the structure of 3,4-seco-oleana-4(23), 18-dien-3-oic acid, isolated together with the known lupeol, butyrospermol, 11α,12α-oxidotaraxerol and 3β -hydroxy-30-nor-lupan-20-one from the methylene chloride extract of the whole herb of Euphorbia chamaesyce L. [1]. A further search for constituents in the extract led to the isolation of another new 3,4-secotriterpene acid (4), in addition to three known triterpeniods (1-3). This paper deals with the characterization of the above compounds.

RESULTS AND DISCUSSION

Two of the known compounds were identified by direct comparison with authentic samples of glutinol (1) [2] and 3β -hydroxymultiflor-8-en-7-one (2) [3]. The remaining one was proved to be cycloart-23Z-en-3β,25diol (3), as its physical and spectral data were in good agreement with those for the compound isolated from Juncus effusus [4] except for the ¹H NMR signals of the cis-disubstituted olefinic protons, which had been reported to be $\delta 5.59$ (2H, m, $W_{1/2} = 8$ Hz) and are now shown to be δ 5.60 (2H, dd, J = 3.1 and 4.1 Hz).

Compound 4 was assigned the molecular formula C₃₀H₄₈O₂ by its HR-EI mass spectrum. The IR spectrum showed the presence of a carboxyl group, a terminal methylene group and a trisubstituted double bond [ν_{max} cm⁻¹: 1708, 1648 and 900 (>C=CH₂) and 1617 and 821 (-CH=C<)], while the UV spectrum exhibited only a terminal absorption. In the ¹H and ¹³C NMR

spectra (Tables 1 and 2), compound 4 revealed signals due to four quaternary methyl groups, two secondary methyl groups [$\delta_{\rm H}0.83$ and 0.89 (each 3H, d, J = 6.5 Hz, a vinylic methyl group [$\delta_H 1.71 \text{ (3H, s)}$], a terminal methylene group [$\delta_{\rm H}$ 4.78 and 4.90 (each 1H, d, J = 1.8 Hz; $\delta_{\rm C} 113.1$ (t) and 146.0 (s)], a trisubstituted double bond $[\delta_H 5.33 \text{ (1H, } ddd, J = 5.8, 2.0 \text{ and } 2.0 \text{ Hz});$ $\delta_{\rm C}$ 119.3 (d) and 141.7 (s)] and a carboxyl group [$\delta_{\rm C}$ 180.7 (s)]. The DEPT spectrum indicated that the carbon skeleton of 4 was composed of seven methyls, nine methylenes, five methines, four quaternary sp³ carbons, one sp² methylene, one sp² methine, two quaternary sp² carbons and one carboxyl carbon. These data suggested 4 to be an unknown tetracyclic triterpene-dienoic acid. Treatment of 4 with diazomethane afforded the corresponding methyl ester (4a) $[v_{\text{max}} \ 1742 \text{ cm}^{-1}; \ \delta_{\text{H}} 3.65 \ (3\text{H}, \ s,$ CO₂Me)]. In the EI mass spectrum of 4 there were two significant fragment ion peaks due to [M-C₃H₇]⁺ (ion a) and $[M-CH_2CH_2CO_2H]^+$ (ion b) at m/z397.3095 and 367.3369, respectively, as well as those at m/z 411.3263 and 367.3369 in 4a, suggesting 4 to have an isopropyl group and a propionic acid moiety in the molecule. Information on the structure was obtained by employing two-dimensional (2D) ¹H-¹H COSY, ¹H-¹³C COSY, long range ¹H-¹³C COSY and EI mass spectral experiments. The 2D long range ¹H-¹³C COSY data provided the carbon framework of 4, as shown in Fig. 1. In the HR-EI mass spectrum (Scheme 1), compound 4 showed a predominant fragment ion peak at m/z339.3047, which was assigned to ion c caused by the elimination of an ethylene molecule from the B-ring of ion b. The most characteristic feature of the fragmentation of 4 was the appearance of two predominant peaks at m/z 372.3028 (ion d) and 359.2945 (ion f, base peak) arising from a retro-Diels-Alder cleavage of the B-ring, followed by the fission of either the C-6/C-7 or C-7/C-8

Table 1. ¹H NMR spectral data for compounds 4, 4a, 5, 6 and 7 (CDCl₃, TMS)*

Н	$\delta_{ m H}$						
	4	4a	5	6	7		
H-1	1.74, 1.98		1.14, 1.89	<u>-</u> .	1.80, 2.07		
H-2	2.50		1.44, 1.55		2.39, 2.72		
H-3			1.11, 1.36				
H-4			_				
H-5	2.02		1.26		1.38, 1.86		
H-6	1.47, 1.97		1.72, 1.56		1.36		
H-7	1.44, 1.63		1.60, 1.33		1.56, 1.66		
H-8	2.03		2.06		2.10 dd (3, t		
H-9	_		_		_		
H-10							
H-11	5.33 ddd	5.32 ddd	5.29 ddd	5.13 dd	5.29 br d		
	(5.8, 2.0, 2.0)	(5.8, 2.0, 2.0)	(5.1, 2.4, 2.4)	(3.6, 3.6)	(6)		
H-12	$1.79 (\alpha), 1.56 (\beta)$	(,,,	1.62, 1.51	(5.5, 5.5)	1.52, 1.72		
H-13	_	_		_			
H-14	-	_			-		
H-15	$1.42 (\alpha), 1.32 (\beta)$		1.40, 1.32		1.27, 1.50		
H-16	$1.66 (\alpha), 1.38 (\beta)$		1.65, 1.40		1.41, 1.68		
H-17	_	_	_				
H-18	1.61		1.56		1.62		
H-19	1.27, 1.37		1.35		1.37		
H-20	1.22, 1.85		1.21, 1.83		1.22, 1.85		
H-21	0.99		0.97		0.98		
H-22	1.43		1.45		1.47		
H-23	4.78 d	4.78 d	0.847	0.898	1.07		
	(1.8)	(1.8)					
	4.90 t	4.89 t	_				
	(1.8)	(1.8)					
Me-24	1.71	1.71	0.888	0.830	1.07		
Me-25	1.02	1.01	1.053	1.020	1.22		
Me-26	0.78	0.77	0.733	0.898	0.81		
Me-27	0.85	0.84	0.822	0.830	0.80		
Me-28	0.76	0.75	0.759	0.762	0.77		
Me-29	0.89 d	0.89 d	0.894 d	0.898 d	0.89 d		
	(6.5)	(6.5)	(6.4)	(6.7)	(6)		
Me-30	0.83 d	0.83 d	0.830 d	0.830 d	0.83 d		
	(6.5)	(6.5)	(6.4)	(6.7)	(6)		
CO ₂ Me	· <i>-</i>	3.65			\ - /		

^{*}Measured at 400 MHz. Data for compounds 5, 6 and 7 cited from refs [13], [14] and [15], respectively.

bond accompanying the rearrangement of a H-6 to C-11. Ion d provided a satellite peak at m/z 221.1547 (ion e) by the further fission of the D-ring; as well as ion f there were two satellite peaks at m/z 209.1565 (ion g) and 207.1385 (ion h). Fragment ion peaks due to the D- and E-rings were observed at m/z 205.1956 (ion i) and 191.1799 (ion i). Similarly, peaks corresponding to ions c-j were confirmed in the spectrum of 4a. All these data suggested 4 to be a 3,4-seco-4(23),9(11)-dien-3-oic acid derived from either fern-9(11)-en-3-ol [5, 6] or arbor-9(11)-en-3-ol [7–10] via oxidative fission of the C-3/C-4 bond in the plant [11]. The ¹H and ¹³C NMR data for 4 were compared with those for the known 8aH-fern-9(11)-ene (5) [12, 13], $8\beta H$ -fern-9(11)-ene (6) [14] and arborinone (7) [15] for the purpose of confirming the genuine skeletal system, although nothing has yet been published on the ¹³C NMR data for 6. It revealed that, owing to anisotropies by the propionic acid and isopropenyl groups, the 13 C NMR signals of C-9 and C-11 in 4 were shifted by - 10 and + 3.7 ppm, respectively, from those of 5, as well as those of 7 by - 5.7 and + 3.7 ppm, respectively. The signals of C-5–C-8 and C-10, composed of the Bring, and C-27 in 4 exhibited significant paramagnetic shifts in comparison with those of 5. Except for C-10, the above carbons resonated at higher magnetic field than those of corresponding signals of 7, suggesting 4 to be not the 3,4-seco-arbor-9(11)-en-3-oic acid, but the $8\alpha H$ - or $8\beta H$ -isomer of 3,4- seco-fern-9(11)-en-3-oic acid. However, no effective information could be obtained to solve the stereochemistry by comparison of the 1H NMR data for 4 with those for 5 and 6.

The complete structure was established by employing NOE difference (NOED) and NOESY experiments (Fig. 2). Selective irradiation on the Me-26 signal fur-

Table 2. ¹³C NMR spectral data for compounds 4, 4a, 5 and 7 (CDCl₃, TMS)*

-	$\delta_{ m C}$					
C_n	4			7		
1	35.6	36.4	41.49	36.6		
2	29.5	29.6	19.56	34.8		
3	180.7	175.5	42.43	217.1		
4	146.0	146.5	33.64	47.6		
5	51.0	51.1	44.88	53.2		
6	24.1	25.7	19.53	26.3		
7	19.4	19.4	17.90	22.6		
8	40.4	40.5	39.98	41.0		
9	141.7	142.3	151.68	147.4		
10	41.2	41.3	38.05	39.3		
11	119.3	119.4	115.60	115.6		
12	36.73	36.84	36.78	36.1		
13	36.66	36.77	36.74	36.7		
14	38.6	38.7	37.69	38.2		
15	29.5	29.6	29.28	29.6		
16	35.9	36.0	36.19	35.8		
17	42.8	42.9	42.97	42.8		
18	52.0	52.1	52.02	52.0		
19	20.2	20.2	20.15	20.1		
20	28.2	28.3	28.23	28.2		
21	59.6	59.8	59.68	59.6		
22	30.8	30.9	30.80	30.7		
23	113.1	113.3	32.80	22.0†		
24	25.6	24.2	21.68	25.5†		
25	22.6	22.7	25.06	21.6		
26	15.7	15.7	15.84	16.9		
27	16.1	16.2	15.43	15.3		
28	14.1	14.1	14.00	13.9		
29	22.1	22.2	22.14	22.1‡		
30	23.0	23.1	23.02	23.0±		
CO₂ <u>Me</u>		51.7				

^{*}Measured at 125 MHz. Data for compounds 5 and 7 cited from refs [13] and [15], respectively. †‡Assignments in each column may be interchanged.

nished 6.3% NOE for the signal of H-8. Irradiation of the signal of Me-25 afforded 15.0, 4.0, 3.2, 2.8 and 1.8% NOE enhancements for the signals of H-11, H-2, H-23, H-8 and Me-24, respectively. Cross-correlation was also observed between signals of Me-27 and Me-28 and between those of H-6 β and H-8 in the NOESY experiment. The above results indicated that the B/C-rings in 4 must have a twisted-boat/twisted-chair conformation joined with H-8 β , and thus Me-25 geminal to a bulky propionic acid group at C-10 comes sterically close to H-11. Accordingly, the structure of 4 was proved as 3,4-seco-8 β H-ferna-4(23), 9(11)-dien-3-oic acid [3,4-seco-8 β H-D:C-friedo-B': A'-neogammacera-4(23), 9(11)-dien-3-oic acid], which has not been described previously in the literature.

EXPERIMENTAL

General. Mps: uncorr. Optical rotations: CHCl₃; UV: EtOH, IR: KBr discs; ¹H NMR (500 and 300 MHz) and ¹³C NMR (125 and 74.5 MHz): CDCl₃ with TMS as int. standard; EI-MS (probe): 70 eV; CC: Kieselgel 60 and Alumina 90 (70–230 mesh, Merck); TLC: Silica gel HF₂₅₄ and PF₂₅₄ (Merck).

Extraction and isolation of compounds. The isolation of 3, 4-seco-oleana-4(23), 18-dien-3-oic acid and four known triterpenes from residues I-IV, fractionated by CC from the CH₂Cl₂ extract of the dried whole herb of cultured E. chamesyce L. (5.516 kg), has previously been reported [1]. A residue (4.87 g) collected from the above CC, which had eluted between residues II and III (fr. nos: 85-101, each fr. 1 l), was subjected to repeated CC on silica gel (300 g) to give gultinol (1), 178 mg, mp 210-212° (MeOH-CHCl₃), $[\alpha]_D^{23}$ + 62.8° (c 0.55) (lit. [2]: mp 210–213°, $[\alpha]_D^{23}$ 63.3°); IR ν_{max} cm⁻¹: 3490, 1643, 972, 826; 1 H NMR: δ 0.85 (Me-25), 0.95 (Me-29), 0.99 (Me-30), 1.00 (Me-27), 1.04 (Me-23), 1.09 (Me-26), 1.14 (Me-24), 1.16 (Me-28), 3.47 (1H, t, J = 3.1 Hz, H-3 α), 5.63 (1H, br d, J = 5.9 Hz, H-6; EI-MS: $m/z 426 \text{ [M]}^+$, from the frs eluted with C₆H₆-CHCl₃ (5:1). The above compound

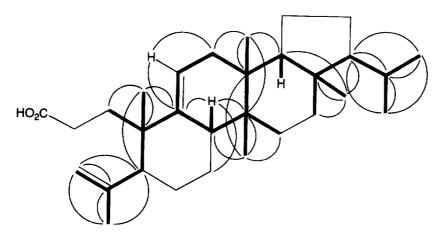


Fig. 1. 2D long range ¹H-¹³C COSY correlations of compound 4.

1166 R. TANAKA et al.

Scheme 1. Mass spectrometric fragmentation of compounds 4 and 4a.

was identified by direct comparison (mmp, co-TLC, IR, ¹H NMR and EI-MS) with an authentic sample [2]. Further elution of the column with C₆H₆-CHCl₃ (2:1) furnished an amorphous mass (0.38 g), which was rechromatographed by CC on 10% AgNO₃-impregnated

alumina (40 g). Elution with *n*-hexane— C_6H_6 (1:1) afforded 3β -hydroxymultiflor-8-en-7-one (2), 33 mg, mp 202–205° (MeOH–CHCl₃), $[\alpha]_D^{23} + 35^\circ$ (*c* 0.26) (lit. [3]: mp 203–205°, $[\alpha]_D + 33.8^\circ$); UV: λ_{max} 255 nm (ϵ 4800), IR ν_{max} cm⁻¹: 3426, 1658, 1177, 1105; ¹H NMR: δ 0.89

(Me-24), 0.95 (Me-27), 0.96 (Me-29), 0.98 (Me-30), 0.99 (Me-23), 1.01 (Me-25), 1.15 (Me-28), 1.34 (Me-26), 3.30 (1H, dd, J = 11.4, 5.2 Hz, H-3 α); EI-MS m/z 440 [M]⁺, which was identified by direct comparison (mmp, co-TLC, ¹H NMR and EI-MS) with an authentic sample [3]. On the other hand, repeated silica gel CC of residue III was continued with CHCl₃ to give compound 4, 925 mg, from the frs after 3,4-seco-oleana-4(23),18-dien-3-oic acid was entirely eluted [2]. Repeated alumina CC of residue IV was continued with C₆H₆-CHCl₃ (10: 1) to yield the known cycloart-23 Z-en-3 β ,25-diol (3), 129 mg,

mp 199.5–202° (MeOH–CHCl₃), $[\alpha]_{23}^{23}$ + 43.6° (c 0.73) (lit. [4]: $[\alpha]_{D}$ + 45°), IR ν_{max} cm⁻¹: 3655 and 3324 (OH), 3038 (cyclopropane), 2970, 2931, 2866, 1467, 1377, 1358, 1224, 1163, 1104, 1051, 971, 890 (> C = CH₂); 1 H NMR: δ 0.33, 0.55 (each 1H, d, d = 4.1 Hz, H-19), 0.81 (Me-29), 0.86 (d, d = 6.3 Hz, Me-21), 0.89 (Me-30), 0.97 (Me-18, Me-28), 1.32 (Me-26, Me-27), 3.29 (1H, dd, d = 10.2, 4.9 Hz, H-3 α), 5.60 (2H, dd, d = 4.1, 3.1 Hz, H-23, H-24); 13 C NMR: δ 14.0 (q, C-28), 18.1 (q, C-18), 18.3 (q, C-21), 19.3 (q, C-30), 20.0 (q, C-9), 21.1 (q, C-6), 25.4 (q, C-29), 26.0 (q, C-10), 26.1 (q, C-11), 26.4 (q, C-16), 28.1 (q, C-7), 29.9 (q,

1168 R. Tanaka et al.

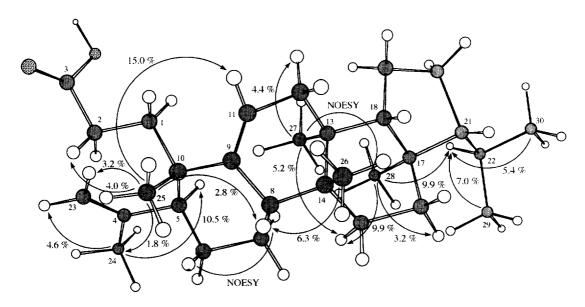


Fig. 2. NOED and NOESY correlations of compound 4.

Compound 4. Needles, mp 227–229° (sublim.) (MeOH–CHCl₃), $[\alpha]_D^{23} - 52^\circ$ (c 0.93); HR-EI-MS: m/z 440.3649 [M]⁺ (C₃₀H₄₈O₂ requires 440.3651); IR $v_{\rm max}$ cm⁻¹: 3418, 2929, 2888, 1708 (COOH), 1648 (>C=CH₂), 1617 (>C=CH–), 1471, 1452, 1381, 1365 (gem. dimethyl), 1297, 1226, 900 (>C=CH₂) and 821 (>C=CH–); ¹H and ¹³C NMR: see Tables 1 and 2; EI-MS m/z (rel. int.): 440 (64) [M]⁺, 425 (10) [M — Me]⁺, 397 (6) [ion a], 372 (4) [ion a], 367 (86) [ion b], 359 (100) [ion f], 339.3047 (75) [ion c], 229 (8), 221 (19) [ion e], 209 (20) [ion g], 207 (29) [ion h], 205 (15) [ion i], 191 (10) [ion f].

Methyl ester of 4. A soln of CH₂N₂ in Et₂O (0.7%, 20 ml) was added to a soln of compound 4 (20 mg) in Et₂O (5 ml) and the mixt. was kept at room temp. for 1 hr. Removal of the solvent in vacuo yielded a residue, which was purified by prep. TLC (plate: 0.5 mm thick; solvent: CHCl₃) to give the corresponding methyl ester (4a), mp 102.5–104.5° (MeOH-CHCl₃), $[\alpha]_D^{23}$ – 48° (c 0.38), 21 mg, as needles; HR-EI-MS: m/z 454.3810 [M]⁺ $(C_{31}H_{50}O_2 \text{ requires } 454.3808); IR v_{max} \text{ cm}^{-1}: 2953,$ 2839, 1742 (CO_2Me), 1647 ($>C=CH_2$), 1617(>C=CH-), 1452, 1436, 1381, 1375, 1288, 1277, 1171, 1017, 897 (>C=CH₂) and 821(>C=CH-); ${}^{1}H$ and ¹³C NMR: see Tables 1 and 2; EI-MS m/z (rel. int.): 454 $(46) [M]^+, 439 (10) [M - Me]^+, 423 (5), 411 (6) [ion]$ a], 386 (2) [ion d], 373 (23) [ion f], 367 (100) [ion b], 339 (24) [ion c], 235 (12) [ion e], 223 (11) [ion g], 221 (26) [ion g]h], 205 (17) [ion i], 191 (13) [ion j].

Acknowledgements—The authors are grateful to Mr K. Minoura and Mrs M. Fujitake of this University for NMR and MS measurements.

REFERENCES

- 1. Tanaka, R., Ida, T., Takaoka, Y., Kita, S., Kamisako, W. and Matsunaga, S. (1994) *Phytochemistry* 36, 129.
- Matsunaga, S., Tanaka, R. and Akagi, M. (1988) *Phytochemistry* 27, 535.
- Tanaka, R. and Matsunaga, S. (1991) Phytochemistry 30, 4093.
- 4. Greca, M. D., Firentino, A., Monaco, P. and Previtera, L. (1994) *Phytochemistry* 35, 1017.
- Ageta, H., Iwata, K. and Natori, S. (1963) Tetrahedron Letters 1447.
- 6. Ageta, H. and Iwata, K. (1966) Tetrahedron Letters 6069.
- Hui, W. H. and Lam, C. N. (1965) Phytochemistry 4, 333.
- 8. Ohmoto, T., Ikuse, M. and Natori, S. (1970) *Phytochemistry* 9, 2137.
- 9. Ohmoto, T., Uzawa, S. and Imazeki, N. (1972) Shoyakugaku Zasshi 26, 47.
- 10. Ohmoto, T., Uzawa, S. and Tanabe, R. (1974) Shoyakugaku Zasshi 28, 1.
- 11. Baas, J. W. (1985) Phytochemistry 24, 1875.
- Wilkins, A. L., Bird, P. W. and Jager, P. M. (1987)
 Magn. Reson. Chem. 25, 503.
- Ageta, H., Shiojima, K., Arai, Y., Suzuki, H. and Kiyotani, T. (1994) Chem. Pharm. Bull. 42, 39.
- Ageta, H., Shiojima, K. and Arai, Y. (1987) Chem. Pharm. Bull. 35, 2075.
- Akihisa, T., Yamamoto, K., Tamura, T., Iida, T. Nambara, T. and Cheng, F. C. (1992) *Chem. Pharm. Bull.* 40, 789.