

REVISED STRUCTURE OF BROUSSOFLAVONOL G AND THE 2D NMR SPECTRA OF SOME RELATED PRENYLFLAVONOIDS

CHUN-NAN LIN,* PAO-HUI CHIU, SONG-CHWAN FANG,† BOR-JINN SHIEH† and RU-RONG WU;

School of Pharmacy, Kaohsiung Medical College, Kaohsiung, Taiwan 807; †Chung Yuan Christian University, Chung Li, Taiwan 320; ‡Instrumental Centre, National Cheng Kung University, Tainan, Taiwan 701

(Received in revised form 12 September 1995)

Key Word Index—Broussonetia papyrifera; Moraceae; broussoflavonol G; 2D NMR; prenyl-flavonoids.

Abstract—The structure of broussoflavonol E (8,2', 6'-triprenyl-3,5,7,3',4'-pentahydroxyflavone), renamed broussoflavonol G, from Formosan *Broussonetia papyrifera*, has been revised to be 8,5',6'-triprenyl-3,5,7,3',4'-pentahydroxyflavonol. The ¹³C NMR spectra of the prenylflavonoids, cyclomorusin, cycloartomunin and dihydroisocycloartomunin, from Formosan *Artocarpus communis*, were reassigned using 2D techniques.

INTRODUCTION

In a previous paper [1], we reported the isolation of two new isoprenylated flavonols, broussoflavonols E (1) and F from Formosan Broussonetia papyrifera. The structure of 1 was determined by spectral methods and comparison of chemical shifts with those of corresponding data for broussoflavonol C (2) [2]. In the ¹³C NMR spectrum of 1, the chemical shift value of C-12' was not in agreement

with the value observed by Fukai and Nomura [3]. Therefore, the two prenyl groups of 1 were incorrectly assigned at C-2' and C-6', respectively. In the present paper, we rename 1 as broussoflavonol G (3) because of broussoflavone E, a prenylflavonol isolated from the root bark of B. papyrifera (L.) Vent. \times B. Kazinoki Sieb [3], report the revised structure of 1 and reassign the 13 C NMR spectra of the prenylflavonoids, cyclomorusin

1: R=R'=CH2-CH=C(CH3)2, R"=H

2: R=CH₂-CH=C(CH₃)₂, R'=C(CH₃)₂-CH=CH₂, R"=H

2': R=C(CH₃)₂-CH=CH₂, R'=H, R"=CH₂-CH=C(CH₃)₂

Fig. 1. Structure of compounds 1, 2, 2', 3 and HMBC of 3.

3

^{*}Author to whom correspondence should be addressed.

Table 1. ¹³C NMR chemical shifts of compounds 2' [2], 3, 4[4], 5 [4] and 6[5]

C	2′*	3†	C	4‡	5‡	6†
C-2	148.7	151.1	C-2	159.6	151.2	153.1
C-3	136.2	137.9	C-3	110.3§	110.2§	111.1*
C-4	175.8	177.6	C-4	179.8	178.5	181.0
C-4a	105.2	105.2	C-4a	106.3§	105.6§	106.5
C-5	159.5	160.5	C-5	156.9	151.3	153.1
C-6	100.9	99.1	C-6	100.7	100.2	100.3
C-7	161.8	162.2	C-7	163.2	161.8	162.3§
C-8	110.1	107.5	C-8	102.6§	101.4§	108.5§
C-8a	155.7	156.2	C-8a	160.4	159.1	163.4§
C-9	40.5	22.4	C-9	70.5	69.6	70.6
C-10	27.5	123.5	C-10	122.4	120.8	123.2
C-11	28.1	131.8	C-11	139.3	139.2	139.7§
C-12	149.1	17.8	C-12	18.7	18.6	18.8
C-13	113.6	25.9	C-13	26.0	25.9	26.1
C-1'	122.7	122.9	C-14	115.7	114.8	22.5
C-2'	114.2	115.8	C-15	129.1	127.5	124.5
C-3'	142.0	143.3	C-16	79.1	78.0	133.2
C-4'	144.8	146.2	C-17	28.4	28.1	18.4
C-5'	127.1	128.7	C-18	28.4	28.2	26.1
C-6'	132.7	131.4	C-1'	108.6§	108.0	109.4§
C-7'	26.2	26.4	C-2'	152.4	140.5	143.9
C-8'	121.9	124.6	C-3'	105.2	100.8	102.9
C-9'	134.4	133.4	C-4'	164.8	155.1	157.8§
C-10'	18.0	18.1	C-5'	111.3	151.3§	155.1§
C-11'	25.8	25.9	C-6'	126.9§	108.0	110.3
C-12'	29.2	29.4	OMe		56.2	57.1
C-13'	123.5	125.4	_	_	_	_
C-14'	131.4	132.2	_	_	_	
C-15'	17.8	17.8	_	_		_
C-16'	25.4	25.6			_	_

^{*}Measured in CDCl₃ + CD₃OD.

(4), cycloartomunin (5) and dihydroisocycloartomunin (6), from *Atrocarpus communis* by 2D spectra.

RESULTS AND DISCUSSION

The EI mass spectrum of 3 indicated the presence of a prenyl group in the A-ring and two prenyl groups in the B-ring [1]. The ¹H NMR spectrum and an AlCl₃induced shift in the UV spectrum of 3 clearly indicated that the prenyl group in the A-ring of 3 was placed at C-8 [1]. The ¹³C NMR spectrum of 3 (Table 1) was reassigned by ¹H-decoupled spectra, DEPT pulse sequence, HMQC and HMBC correlations (Fig. 1) and comparison of chemical shifts with those of corresponding data for revised broussoflavonol C (2') [3]. In the ¹³C NMR spectrum of 3, the chemical shift values of the C-1 position of the prenyl groups were observed at δ 22.4, 26.4 and 29.4, respectively. These chemical shifts clearly indicated that the prenyl groups were at C-8, C-5' and C-6', respectively [3]. The remeasured HMBC correlations (Fig. 1) also supported the revised structure as 3. Thus, in the ^{1}H NMR spectrum of 3, the signal at $\delta 6.90$ was revised and assigned to H-2'.

Assignment of the ¹³C NMR spectra of cyclomorusin (4), cycloartomunin (5) and dihydroisocycloartomunin (6) have been reported [4,5]. For further confirmation of these assignments, the ¹³C NMR spectra of 4-6 were reassigned by ¹H-decoupled spectra, DEPT pulse sequence, ¹H-¹H and ¹H-¹³C COSY spectra and ¹H-¹³C long-range HETCOR, respectively (Table 1 and Fig. 2). These clearly indicated that the C-3 carbon signal of a flavone induced a downfield shift of ca 11-12 ppm due to its 2'-hydroxyl group being oxidatively cyclized with the doubly allylic methylene of a prenyl chain in the 3-position, as in cyclomorusin (4).

EXPERIMENTAL

 1 H and 13 C NMR were measured using a Bruker AM-400 or Varian Gemini 200 MHz FT-NMR; spectral data are reported as ppm downfield from TMS ($\delta = 0$).

[†]Measured in (CD₃)₂CO.

[‡]Measured in CDCl₃.

[§]Signals revised.

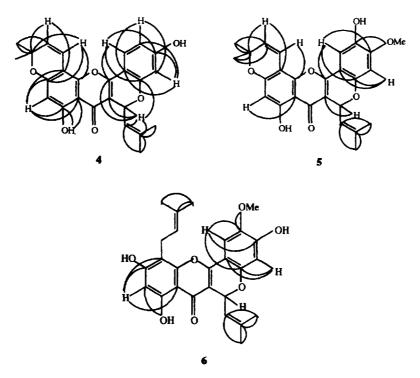


Fig. 2. ¹H-¹³C long-range HETCOR of compounds 4-6.

For ¹³C assignments, broad-band decoupled ¹³C and DEPT expts were carried out. In order to make unambiguous characterization of compound or assignment of carbon signals, additional ¹H-¹H and ¹H-¹³C shift-correlated 2D-NMR expts were also performed for the compounds.

Acknowledgement—This work was supported in part by a grant from the National Science Council of the Republic of China (NSC 84-2331-B037-075).

REFERENCES

- Fang, S. C., Shieh, B. J., Wu, R. R. and Lin, C. N. (1995) Phytochemistry 38, 535.
- Fukai, T., Ikuta, J. and Nomura, T. (1986) Chem. Pharm. Bull. 34, 1987.
- Fukai, T. and Nomura, T. (1989) Heterocycles 29, 2379.
- Lin, C. N. and Shieh, W. L. (1991) Phytochemistry 30, 1669
- Lin, C. N. and Shieh, W. L. (1992) Phytochemistry 31, 2922.