

LYCOPEROSIDES A–C, THREE STEREOISOMERIC 23-ACETOXYSPIROSOLAN-3 β -OL β -LYCOTETRAOSIDES FROM LYCOPERSICON ESCULENTUM*

SHOJI YAHARA,† NORIKO UDA and TOSHIHIRO NOHARA

Faculty of Pharmaceutical Sciences, Kumamoto University, Oe-honmachi 5-1, Kumamoto 862, Japan

(Received in revised form 4 October 1995)

Key Word Index—*Lycopersicon esculentum*; Solanaceae; lycoperosides; steroidal glycosides; 23-acetoxyspirosolanes; (23R)-23-acetoxytomatidine; (23S)-23-acetoxysoladulcidine; (23S, 25S)-23-acetoxy- 5α ,22 αN -spirosolan- 3β -ol; tomato.

Abstract—Three new steroidal alkaloid glycosides, lycoperosides A-C, were isolated from leaves and fruits of tomato, *Lycopersicon esculentum*, and structurally elucidated as the 3-O- β -lycotetraosides of (23R)-23-acetoxy-tomatidine, (23S)-23-acetoxysoladulcidine and (23S,25S)-23-acetoxy-5 α ,22 αN -spirosolan-3 β -ol. In addition to these glycosides, leaves and fruits were found to contain the known major alkaloid tomatine (tomatidine 3-O- β -lycotetraoside) and leaves a small amount of γ -tomatine (tomatidine 3-O-[β -D-glucopyranosyl-(1 \rightarrow 4)- β -D-galactopyranoside], lycoperoside D).

INTRODUCTION

Tomato (*Lycopersicon esculentum*) is an important vegetable. With regard to the constituents of this plant, tomatine from the leaves [1], bitter furostanol glycoside (TFI) from seeds [2], some steroid alkaloids, such as tomatidine, (23R)-23-acetoxytomatidine, (23S)-23-acetoxysoladulcidine and (23S,25S)-23-acetoxy-5 α , $22\alpha N$ -spirosolan-3 β -ol from the roots [3, 4], in addition to carotenes from the fruits have been reported. Our study has focused on the water-soluble constituents of the leaves of tomato and we have isolated four new spirosolane glycosides, named lycoperosides A-D (1-4), alone with tomatine (5). This paper deals with the structural characterization of these glycosides.

RESULTS AND DISCUSSION

Tomatine (5) was identified by comparison of its physical and spectral data with those of an authentic specimen; ¹³C NMR signals were assigned by HMQC and HMBC at 500 MHz (Table 1). Lycoperosides A–D (1–4) were positive with Dragendorff's reagent, indicating that those compounds were steroidal alkaloids.

Lycoperoside A (1), a white powder, showed quasi ion peaks $[M + H]^+$ at m/z 1092 and $[M + Na]^+$ at m/z 1114 in the positive FAB-mass spectrum. The ¹H and ¹³C NMR spectra of 1 were similar to those of 5,

Table 1. 13 C NMR data for lycoperosides A(1), B(2), C(3) and D(4), and tomatine (5) (in pyridine d_5)

	1	2	3	4	5
C-1	37.0	37.1	37.1	37.1	37.0
2	29.7	29.8	29.8	29.9	29.7
3	77.4*	77.5*	77.5*	77.1	77.4*
4	34.7	34.7	34.7	34.7	34.7
5	44.6	44.6	44.6	44.5	44.5
6	28.8	28.8	28.9	28.9	28.8
7	32.3	32,3	32.3	32,4	32.3
8	35.0	35.2	35.2	35.1	35.0
9	54.3	54.2	54.3	54.4	54.4
10	35.7	35.7	35.7	35.7	35.7
11	21.2	21.1	21.1	21.2	21.1
12	40.3	40.1	40.1	40.3	40.2
13	41.1	41.4	41.3	41.0	40.9
14	55.4	56.4	56.3	55.7	55.7
15	33.9	32.2	32.2	32.9	32.9
16	82.3	79.1	78.9	78.8	78.7
17	63.4	62.8	62.7	62.2	62.3
18	17.0	16.4	16.3	17.0	17.0
19	12.2	12.2	12.2	12.2	12.2
20	43.2	35.0	35.2	42.8	42.8
21	15.8	15.1	15.1	16.0	16.0
22	100.3	98.4	99.2	99.1	99.1
23	75.1	71.1	68.0	26.9	26.9
24	35.1	36.0	33.6	29.0	29.0
25	30.5	31.7	29.3	31.1	31.1
	49.2	46.5	44.0	50.3	50.3
26 27	18.7	18.8	17.7	19.6	19.6
21	16.7	10.0	17.7	17.0	
23-OAc	21.1	21.1	21.3		
	169.8	170.6	169.8		
al C-1	102.3	102.3	102.3	102.4	102.3
2	73.0	73.1	73.1	72.1	73.0
3	75.4	75.5	75.5	75.1	75.4
4	79.7	79.8	79.8	79.9	79.7
5	75.1	75.2	75.2	75.8	75.1
6	60.5	60.5	60.5	60.9	60.5
nner					
le C-1	105.0**	104.8**	104.8**		104.7
2	81.2	81.2	81.2		81.2
3	86.7	86.7	86.7		86.7
4	70.8	70.9	70.9		70.3
5	77.6*	77.6*	77.6*		77.6
6	62.8	62.9	62.9		62.8
erminal					
glc C-1	105.0**	105.1**	105.0**	106.6	104.9
2	76.0	76.1	76.1	75.3	76.0
3	77.3*	77.3*	77.3*	78.3*	77.2
4	70.3	70.4	70.4	73.3	70.8
5	78.5	78.5***	78.5***	78.5*	78.5
6	62.3	62.3	62.3	63.0	62.3
yl C-l	104.7**	104.7**	104.7**		104.7
2	74.9	74.9	74.9		74.9
3	78.5	78.6***	78.6***		78.5
4	70.6	70.6	70.6		70.6
5	67.2	67.2	67.2		67.2

^{*, **, ***} Signal assignments may be reversed in each column.

except for carbon signals assignable to an acetoxyl group and C-20 to C-27 on the E- and F-ring. On the basis of the chemical shifts of C-16 to C-26, both configurations at C-22 and C-25 were judged to be of the same type as in tomatine. As listed in Table 1, the respective shifts by $+48.2 [\delta 75.1 (d)]$ and $+6.1 [\delta$ 35.1 (t)] were observed at C-23 and C-24 in the aglycone of 1, compared with those of 5 and crosspeaks in the ${}^{1}H-{}^{13}C$ COSY occurred between δ 75.1 (C-23) and 5.19 (m), and δ 35.1 (C-24) and 1.69 (m)/2.01 (m), indicating that the acetoxyl moiety was attached to C-23 of the aglycone. The signal at δ 5.19 (m, H-23) overlapped with the glucosyl anomeric proton signal in pyridine-d₅ and the ¹H NMR and ¹H-¹H COSY spectra of 1 in CD₃OD exhibited a C-23 axial proton signal (dd, J = 4.4, 11.0 Hz) at δ 4.78. Therefore, the structure of 1 could be expresed as (23R)-23-acetoxytomatine. Its aglycone was identified by NMR as (23R)-23-acetoxytomatidine, which has been isolated previously from the roots of a L. esculentum and L. hirsutumthis hybrid [4].

Lycoperoside B (2) showed quasi-molecular ion peaks $[M+H]^+$ at m/z 1092 and $[M+Na]^+$ at m/z 1114 in the positive FAB-mass spectrum. The 1H and 13 C NMR spectra of 2 were similar to those of 1, except for the C-20 to C-26 signals for the E- and F-ring, whose signals were superimposable on those of (23S)-23-acetoxysoladulcidine [4]. Accordingly, 2 was suggested to be the C-22, C-23 and C-25 isomer of 1. This was confirmed by a comparative study of the 13 C NMR data of the aglycone part in 2 with those of (23S)-23-acetoxysoladulcidine [4].

Lycoperoside C (3) showed quasi-molecular ion peaks $[M + H]^+$ at m/z 1092 and $[M + Na]^+$ at m/z1114 in the positive FAB-mass spectrum; thus, 3 was suggested to be an isomer of 1 and 2. The 'H NMR and H-H COSY spectra of 3 were similar to those of 1 and 2, except for the signals of δ 2.42 (1H, br d, J = 11.0 Hz), 3.30 (1H, dd, J = 3.7, 11.0 Hz) and 5.43 (1H, dd, J = 5.0, 12.0 Hz), ascribable to the H₂-26 and H-23 axial protons, respectively. Hence, the structure of 3 was considered to be a 23-acetoxy spirosolane with the (25S) configuration. By comparing the ¹³C NMR spectrum of 3 with those of 1 and 2, the C-20 signal in **3** appeared at δ 35.2; the configuration of C-22 in **3** was therefore determined to be S. The aglycone of 3 was identified as (23S,25S)-23-acetoxy- 5α ,22 α N-spirosolan-3 β -ol [4]. Consequently, 3 was characterized as shown in the formula.

Lycoperoside D (4) showed a quasi-molecular ion peak $[M + H]^+$ at m/z 740 in the positive FAB-mass spectrum. The ¹³C NMR data indicated the presence of one terminal β -glucopyranosyl moiety and one β -galactopyranosyl moiety substituted at C-4 (δ 79.9). The aglycone moiety signals were analogous to those of tomatine (5). Consequently, 4 was shown to be identical to γ -tomatine [5].

EXPERIMENTAL

¹H (400 MHz) and ¹³C NMR (100 MHz) NMR: TMS int. standard. TLC: precoated Kieselgel 60 F₂₄₅ (Merck). CC: Kieselgel (270–400 mesh, Merck), Chromatorex ODS (Fuji Silisia Ltd) and MCI gel CHP-20P (Mitsubishi Chemical Ind.).

Extraction and separation. Dried leaves of L. esculentum Miller (1.5 kg) were extracted with MeOH and the extract (350 g) shaken with benzene and H₂O. The aq. phase yielded a residue of 222 g. This was subjected to CC on MCI gel CHP-20P eluting with $H_2O \rightarrow 40\% \rightarrow 60\% \rightarrow 80\% \text{ MeOH} \rightarrow \text{MeOH} \rightarrow 2\%$ NH₃/MeOH to provide nine frs. Fr. 6 (1.2 g, MeOH eluate) was subjected to a combination of various CC on silica gel (CHCl3-MeOH-H2O-NH4OH, 7:2.2:0.2:0.1) and Chromatorex ODS (70-75% MeOH) to give 1 (41 mg, 2.7×10^{-3} %), 2 (31 mg, 2.1×10^{-3} %) and **3** (34 mg, 2.3×10^{-3} %). Fr. 7 (2.6 g, 2% NH,/MeOH eluate) was subjected to a combination of various CC over silica gel (CHCl3-MeOH-H₂O-NH₄OH, 7:3:0.5:0.1) and Chromatorex ODS (80–85% MeOH) to give 4 (14 mg, 9.3×10^{-4} %) and 5 (1.7 g, 0.11%).

Lycoperoside A (1). Amorphous powder. $[\alpha]_{D}^{27}$ -31.6° (c 0.80, MeOH). Positive FABMS (m/z): 1114.5402 (calcd for $C_{52}H_{85}NO_{23}Na$: 1114.5410, [M + Na]⁺), 1092 [M + H]⁺. ¹H NMR (pyridine- d_5): δ 0.51 (1H, $br\ t$, $J = 10.0\ Hz$, H-9), 0.63 (3H, s, H₃-19), 0.78 $(3H, d, J = 5.9 \text{ Hz}, H_3-27), 0.88 (3H, s, H_3-18), 1.15$ $(3H, d, J = 8.0 \text{ Hz}, H_3-21), 1.69 (1H, m, H_a-24), 2.01$ $(1H, m, H_b-24), 2.21 (3H, s, Ac), 2.72 (1H, br d,$ $J = 10.8 \text{ Hz}, \text{ H}_a-26), 2.87 \text{ (1H, } t, J = 10.8 \text{ Hz}, \text{ H}_b-26),$ 3.67 (1H, t, J = 10.2 Hz, xyl H-5), 3.80-4.60 (22H, m, sugar), 4.68 (1H, t, J = 9.8 Hz, gal H-6), 4.88 (1H, d, J = 7.3 Hz, gal H-1), 5.02 (1H, ddd, J = 7.3, 7.3, 8.4 Hz, H-16), 5.18 (1H, d, J = 7.3 Hz, inner glc H-1), 5.19 (1H, m, H-23) (in CD₃OD (δ 4.78, dd, J = 4.4, 11.0 Hz)), 5.22 (1H, d, J = 7.7 Hz, terminal glc H-1), 5.56 (1H, d, J = 7.3 Hz, xyl H-1).

Lycoperoside *B* (2). Amorphous powder. $[\alpha]_{D}^{27}$ –40.3° (*c* 0.56, MeOH). Positive FABMS (*m/z*): 1114.5403 (calcd for C₅₂H₈₅NO₂₃Na: 1114.5410, [M + Na]⁺), 1092 [M + H]⁻. H NMR (pyridine-*d₅*): δ 0.50 (1H, *br t*, *J* = 11.0 Hz, H-9), 0.66 (3H, *s*, H₃-19), 0.79 (3H, *d*, *J* = 6.0 Hz, H₃-27), 0.92 (3H, *s*, H₃-18), 1.12 (3H, *d*, *J* = 7.0 Hz, H₃-21), 2.20 (3H, *s*, Ac), 2.68 (1H, *dd*, *J* = 5.0, 11.0 Hz, H_a-26), 2.74 (1H, *t*, *J* = 11.0 Hz, H_b-26), 3.68 (1H, *t*, *J* = 10.4 Hz, xyl H-5), 3.79–4.60 (22H, *m*, sugar), 4.55 (1H, *m*, H-16), 4.69 (1H, *t*, *J* = 9.5 Hz, gal H-6), 4.88 (1H, *d*, *J* = 7.7 Hz, gal H-1), 5.18 (1H, *d*, *J* = 7.7 Hz, inner glc H-1), 5.20 (1H, *m*, H-23) (in CD₃OD (δ 4.81, *dd*, *J* = 4.8, 11.8 Hz), 5.23 (1H, *d*, *J* = 7.7 Hz, terminal glc H-1), 5.57 (1H, *d*, *J* = 7.3 Hz, xyl H-1).

Lycoperoside C (3). Amorphous powder. $[\alpha]_D^{27}$ = 26.3° (c 0.63, MeOH). Positive FABMS (m/z):

172 S. Yahara et al.

(3H, s, H₃-18), 1.13 (3H, d, J = 7.0 Hz, H₃-21), 1.22 (3H, d, J = 7.0 Hz, H₃-27), 2.17 (3H, s, Ac), 2.42 (1H, br d, J = 11.0 Hz, H_a-26), 3.30 (1H, dd, J = 3.7, 11.0 Hz, H_b-26), 3.68 (1H, t, J = 10.2 Hz, xyl H-5), 3.80–4.60 (22H, m, sugar), 4.48 (1H, ddd, J = 7.2, 7.2, 8.4 Hz, H-16), 4.69 (1H, t, J = 9.9 Hz, gal H-6), 4.88 (1H, d, J = 7.7 Hz, gal H-1), 5.19 (1H, d, J = 8.0 Hz, inner glc H-1), 5.23 (1H, d, J = 7.7 Hz, terminal glc H-1), 5.43 (1H, dd, J = 5.0, 12.0 Hz, H-23), 5.56 (1H, d, J = 7.0 Hz, xyl H-1).

Lycoperoside D (4). Amorphous powder. $[\alpha]_0^{27}$ – 10.8° (c 0.60, MeOH). Positive FABMS (m/z): 740 $[M+H]^+$. ¹H NMR (pyridine d_s): δ 0.56 (1H, br t, J=10.0 Hz, H-9), 0.65 (3H, s, H₃-19), 0.81 (3H, d, J=6.6 Hz, H₃-21), 0.86 (3H, s, H₃-18), 1.07 (3H, d, J=7.0 Hz, H₃-27), 2.82 (1H, br d, J=10.7 Hz, H-26), 2.94 (1H, t, J=10.7 Hz, H-26), 3.93 (1H, t, t), 4.05–4.32 (8H, t), sugar), 4.21 (1H, t), H-16), 4.41

(1H, t, J = 9.2 Hz, gal H-2), 4.62 (1H, br d, J = 9.2 Hz, glc H-6), 4.69 (1H, t, J = 9.4 Hz, gal H-6), 4.73 (1H, t, J = 3.7 Hz, gal H-4), 4.90 (1H, d, J = 7.7 Hz, gal H-1), 5.30 (1H, d, J = 8.0 Hz, glc H-1).

REFERENCES

- Sinden, S. L., Schalk, J. M. and Stoner, A. K. (1978) J. Am. Soc. Hortic. Sci. 103, 596.
- Nagaoka, T., Yoshihara T. and Sakamura S. (1987) *Phytochemistry* 26, 2113.
- Yoshihara T., Nagaoka, T. Ohra, J. and Sakamura,
 S. (1988) Phytochemistry 27, 3982.
- Nagaoka, T., Yoshihara, T., Ohra, J. and Sakamura S. (1993) *Phytochemistry* 34, 1153.
- Kuhn, R., Löw, I. and Trischmann, H. (1957) Chem. Ber. 90, 203.