

BUNTANBISMINE, A BISACRIDONE ALKALOID FROM *CITRUS GRANDIS F. BUNTAN*

TIAN-SHUNG WU,* SHIOW-CHYN HUANG and PEI-LIN WU

Department of Chemistry, National Cheng Kung University, Tainan, Taiwan 701, R.O.C.

(Received 19 September 1995)

Key Word Index—Citrus grandis f. buntan; Rutaceae; stem bark acridone alkaloid; bisacridone; buntanbismine.

Abstract—A C-C linked bisacridone alkaloid, buntanbismine, was isolated from the stem bark of *Citrus grandis* f. *buntan*. Its structure has been characterized by spectral analyses and chemical transformation.

INTRODUCTION

The isolation of acridone alkaloids and coumarins from the stem bark of *Citrus grandis* f. *buntan* (Chinese name, buntan) has been reported previously [1, 2]. During the separation of the lower polar fraction of the acetone extract, an unidentified compound **b** has also been obtained [1]. The present paper deals with the structural elucidation of this compound as buntanbismine (1) by spectral analyses and chemical transformation.

RESULTS AND DISCUSSION

Buntanbismine (1) was isolated as red needles (mp > 300°) in 0.00055% yield. High-resolution FAB mass spectrometry determined the molecular formula of 1 as C₃₅H₃₂N₂O₉. The UV spectrum showed maxima at 202, 251 (sh), 271, 289 (sh), 331 nm, typical for the 9-acridone chromophore [3–6]. The absorption bands at 3407 and 1638 cm⁻¹ in the IR spectrum together with downfield signals at δ 15.10 and δ 14.21 (each 1H, disappearing with D₂O) in the ¹H NMR spectrum (Table 1) corresponded to the presence of two strongly intramolecular hydrogen-bonded hydroxyl protons. Thus, a binary 1-hydroxy-9-acridone structure was suggested for 1. In the aromatic region of the ¹H NMR spectrum of 1, there were two sets of mutually coupled proton systems. One at δ 6.74 (d, J = 7.4 hz), 7.04 (t, J = 7.4 Hz) and 7.61 (d, J = 7.4 Hz) was assignable to H-6, H-7 and H-8, respectively the other at δ 7.19 (d, J = 9.0 Hz) and 8.10 (d, J = 9.0 Hz) for H-7' and H-8', respectively. These assignments were determined through the lower-field signals of H-8 and H-8', which were deshielded by the adjacent carbonyl group. The

¹H NMR spectrum also showed one characteristic N-methyl at δ 3.66, three aryl methoxyls at δ 3.06, 3.96 and 4.07, two D₂O-exchangeable acridone NH and phenolic OH at δ 9.51 and 11.06. The remaining signals occurred two oxygen-linked methyls at δ 1.52 (s) and 1.61 (s), one methylene at δ 1.78 (m) and 2.18 (m), and one benzylic proton at δ 5.01 (dd, J = 7.0, 11.0 Hz) and were deduced to be a dimethyl-dihydropyran ring residue. In order to determine the location of these substituents, acetylation of 1 with acetic anhydride in pyridine was undertaken and gave a monoacetylated compound (1a) and a diacetylated compound (1b) after preparative TLC.

The M_c of **1a** was 42 amu more than that of **1**, that is, a hydrogen atom was replaced by an acetyl group. Comparing the 'H NMR spectrum of 1a with that of 1, the hydroxyl signal at δ 11.06 disappeared, being replaced by acetyl absorption at δ 1.94 (Table 1). In addition, the doublet signal in 1 at δ 6.74 (H-6) was shifted significantly to lower field in 1a at δ 7.06. Hence, the hydroxyl group can be placed at C-5. In an NOE difference experiment of 1a (Fig. 1), irradiation of the N-methyl (δ 3.58) caused a 1.8 and 13.5% enhancement of signals at δ 1.94 (5-OAc) and 5.0 (H-11) which revealed a dimethyldihydropyran ring angularly-fused to the upper acridone, with a singlet aromatic proton assigned to H-2. On further examination of the ¹³C NMR spectrum of **1a**, a doublet ¹³C signal appearing at δ 99.15 could be assigned to C-2 in this angular pyranoacridone; on the other hand, the other doublet ¹³C signal in the same region at 87.9 should be inferred for C-4' [7, 8]. Irradiation of the two methoxyl singlets at δ 3.08 and 4.03 resulted in 16.1 and 9.0% increase of the signals at δ 5.82 (H-4') and 6.98 (H-7'), respectively. However, no effect was

	1*	1a†	1 b †
1-OH or OAc	14.21 (s)	13.93 (s)	2.49 (s)
H-2	6.53 (s)	6.33 (s)	6.52(s)
N-Me	3.66 (s)	3.58 (s)	3.53 (s)
5-OH or OAc	11.06 (s)	1.94 (s)	1.92(s)
H-6	6.74 (d, 7.6)	7.06 (dd, 7.8 and 1.2)	6.99 (dd, 7.8 and 2.1)
H-7	7.04(t, 7.6)	7.14 (t, 7.8)	7.08(t, 7.8)
H-8	7.61 (d, 7.6)	8.15 (dd, 7.8 and 1.2)	8.08 (dd, 7.8 and 2.1)
H-11	5.01 (dd, 11.0 and 7.0)	5.00 (dd, 12.0 and 7.0)	5.02 (dd, 11.0 and 6.6)
H-12	$1.78 \ (m)$	1.74 (dd, 13.0 and 12.0)	1.75 (m)
	2.18 (m)	2.20 (dd, 13.0 and 7.0)	2.24 (m)
13-Me	1.52 (s)	1.48 (s)	1.49(s)
	1.61 (s)	1.56(s)	1.56 (s)
1'-OH	15.10 (s)	14.81 (s)	14.80 (br s)
3'-OMe	3.06 (s)	3.08(s)	3.06 (s)
H-4'	6.16 (s)	5.82(s)	5.82(s)
NH	9.51 (s)	8.45 (s)	8.41 (s)
5'-OMe	3.96 (s)	4.01 (s)	4.01 (s)
6'-OMe	4.07 (s)	4.03(s)	4.03 (s)
H-7'	7.19(d, 9.0)	6.98 (d, 9.3)	6.93 (d, 9.0)
H-8'	8.10(d, 9.0)	8.11 (d, 9.2)	8.12(d, 9.0)

*DMSO- d_6 . †CDCl₃.

half of 1a. The EI-mass spectrum further confirmed the structure of 1a. A base peak at m/z 301 was responsible for the lower half acridone plus a hydrogen atom, as well as a fragment ion peak at m/z 366 for the upper half acridone. Based on the above analyses of 1 and 1a, the linkage of two acridone units was concluded to be between C-11 and C-2' in the upper and lower halves of this molecule and the structure of buntanbismine was established as 1.

A notable spectral feature of buntanbismine (1) was an abnormal upfield shift of the 3'-methoxyl signal (δ 3.06) which was probably due to the effect of the anisotropic ring current of the upper half acridone in the three-dimensional conformation. The preferred conformation was suggested that two non-parallel acridones caused the 3'-methoxyl group in the lower half acridone located above the upper half acridone.

Compound **1b** exhibited another acetyl group at δ 2.49 and a downfield shift of H-2 (δ 6.33 in **1a**, 6.52 in **1b**) in the ¹H NMR spectrum (Table 1) together with

a relatively intense fragment peak at m/z 301 in the mass spectrum. The diacetate of 1 obviously involved substitution of C-1 and C-5 of the upper acridone.

EXPERIMENTAL

General. Mps, uncorr. UV: MeOH. IR: KBr. ¹H and ¹³C NMR: CDCl₃ with TMS as int. ref. except where noted. MS: direct inlet.

Plant material, extraction and isolation. The isolation procedure was as described in refs [1, 2]. The unidentified compound **b** from the Me₂CO extract of the stem bark of *C. grandis* f. buntan (2 kg) was determined as 1 (10 mg).

Buntanbismine (1). Red needles (CHCl₃), mp> 300°. FAB-HRMS: calcd for $C_{35}H_{33}N_2O_9$, m/z625.2186 [M + H] $^+$, found 625.2172. UV λ_{max} nm (log ε): 202 (4.01), 251 (3.85, sh), 271 (4.10), 289 (2.78, sh), 331 (3.29). IR v_{max} cm⁻¹: 3407, 1638, 1607, 1567. FABMS m/z (ref. int.): 625 ([M + H]⁺, 80), 609 (7), 324 (100), 323 (12), 314 (17), 308 (7), 302 (17), 301 (5). Acetylation of buntanbismine (1). Buntanbismine (1) (10 mg) was dissolved in a soln containing Ac₂O (2 ml) and pyridine (2 ml) and then refluxed for 1 hr. After cooling, the resulting mixt, was extracted with Et₂O and washed with 5% HCl, 5% NaHCO₃ and satd. NaCl, successively. The Et₂O soln was dried (MgSO₄) and concd in vacuo. The crude product was purified by prep. TLC to give two compounds, 1a (6 mg) and 1b (4 mg).

5-Acetylbuntanbismine (1a). Yellow needles (CHCl₃), mp > 250°. EI-HRMS: calcd for $C_{37}H_{34}N_2O_{10}$, m/z 666.2215 [M]⁺, found 666.2213. UV $\lambda_{\rm max}$ nm: 219, 229, 255 (sh), 272, 333, 392. IR $v_{\rm max}$ cm⁻¹: 3369, 1764, 1637, 1585, 1559. EIMS m/z (rel. int.): 666 ([M]⁺, 17), 651 (39), 366 (16), 365 (19), 323 (22), 308 (61), 301 (100), 293 (28), 286 (24). ¹³C NMR: δ 21.1 (q), 22.5 (q), 28.1 (d), 29.5 (q), 39.5 (t), 46.5 (q), 55.4 (q), 56.3 (q), 61.1 (q), 76.0 (s), 87.9 (d), 99.2 (d), 103.9 (s), 104.8 (s), 107.3 (s), 107.7 (s), 110.3

(s), 114.9 (s), 121.8 (d), 122.0 (d), 123.3 (d), 125.1 (s), 128.1 (d), 133.8 (s), 135.0 (s), 139.8 (s), 140.0 (s), 141.0 (s), 150.4 (s), 154.7 (s), 160.5 (s), 161.9 (s), 162.9 (s), 164.0 (s), 168.9 (s), 181.0 (s), 181.2 (s).

1,5-Diacetylbuntanbismine (1b). Yellow syrup. UV λ_{max} nm: 215, 263 (sh), 327, 387. IR v_{max} cm⁻¹: 3291, 1769, 1696, 1606, 1561. EIMS m/z (rel. int.): 708 ([M]⁺, 59), 666 (100), 651 (64), 365 (18), 350 (23), 323 (40), 314 (38), 301 (61). ¹³C NMR: δ 21.2 (q), 21.4 (q), 22.5 (q), 28.6 (d), 29.5 (q), 39.5 (t), 46.1 (q), 55.5 (q), 56.3 (q), 61.1 (q), 75.6 (s), 87.8 (d), 104.1 (d), 107.7 (d), 108.8 (d), 109.9 (s), 112.0 (s), 112.2 (s), 115.0 (s), 121.8 (d), 122.1 (d), 127.5 (d), 127.5 (s), 133.9 (s), 135.1 (s), 139.4 (s), 139.9 (s), 141.1 (s), 149.5 (s), 151.8 (s), 154.8 (s), 159.9 (s), 160.6 (s), 164.1 (s), 169.1 (s), 170.2 (s), 177.0 (s), 181.0 (s).

Acknowledgement—We thank the National Science Council, R. O. C. (NSC 77-0208-M126-04) for support of this research.

REFERENCES

- Huang, S. C., Chen, M. T. and Wu, T. S. (1989) *Phytochemistry* 28, 3574.
- Wu, T. S., Huang, S. C. and Lai, J. S. (1994) Phytochemistry 36, 217.
- Reish, J., Szendri, K., Minker, E. and Novak, I. (1972) *Pharmazie* 27, 208.
- Brown, R. D. and Lahey, F. N. (1950) Aust. Sci. Res. A3, 539.
- 5. Fraser, A. W. and Lewis, J. R. (1973) *J. Chem. Soc. Perkin Trans* 1, 1173.
- Wu, T. S., Kuoh, C. S. and Furukawa, H. (1983) *Phytochemistry* 22, 1493.
- Furukawa, H., Yogo, M. and Wu, T. S. (1983) Chem. Pharm. Bull. 31, 3084.
- Furukawa, H., Wu, T. S., Kuoh, C. S., Sato, T., Nagai, Y. and Kagei, K. (1984) *Chem. Pharm. Bull.* 32, 1647.