

SECO-EREMOPHILANE DERIVATIVES FROM RHIZOMES OF PETASITES JAPONICUS*

YASUNORI YAOITA and MASAO KIKUCHI†

Department of 2nd Analytical Chemistry, Tohoku College of Pharmacy, 4-4-1 Komatsushima, Aobaku, Sendai, Miyagi 981, Janan

(Received 31 August 1995)

Key Word Index—*Petasites japonicus*; Compositae; rhizomes; *seco*-eremophilane derivatives; secoeremopetasitolide A; secoeremopetasitolide B.

Abstract—Two new *seco*-eremophilane derivatives, secoeremopetasitolides A and B, were isolated from the dried rhizomes of *Petasites japonicus*. The structures of the new compounds were determined by spectroscopic evidence.

INTRODUCTION

The rhizomes of *Petasites japonicus* MAXIM have been used for the treatment of tonsillitis, contusion and poisonous-snake bite in China [1]. In previous papers, we have reported structural elucidation of eremophilenolides [2–5], nor-sesquiterpenoid [6], phenolic compounds [7], triterpenoids and anthraquinones [8] from the dried rhizomes of *P. japonicus*. In continuation of our investigation, we have isolated two new *seco*-eremophilane derivatives, named secoeremopetasitolide A (1) and secoeremopetasitolide B (2), from a methanolic extract of the dried rhizomes.

RESULTS AND DISCUSSION

Compound 1 was isolated as needles, mp 168-169°, $[\alpha]_D$ -34.7°. The molecular formula $C_{19}H_{26}O_7$ was revealed by HR mass spectrometry. The IR spectrum suggested the presence of a hydroxyl group $(3495 \text{ cm}^{-1}),$ an α, β -unsaturated (1764 cm⁻¹), a six-membered ring ketone (1703 cm⁻¹) and an α, β -unsaturated ester (1703 and 1645 cm⁻¹). The ¹H and ¹³C NMR spectra (Table 1), with the aid of ¹H-¹H COSY and HMQC spectra, showed signals due to a secondary methyl group [δ_H 0.95 (6H, d, J =7.3 Hz, H-14), $\delta_{\rm C}$ 10.0/10.2 (C-14)], a tertiary methyl group [$\delta_{\rm H}$ 1.12 (6H, s, H-15), $\delta_{\rm C}$ 16.2/16.4 (C-15)], an olefinic methyl group [$\delta_{\rm H}$ 2.11 (6H, s, H-13), $\delta_{\rm C}$ 12.9/ 13.0 (C-13)], a hydroxyl-bearing methine [δ_H 4.56 (2H, m, H-3), δ_C 67.1/67.4 (C-3)], an oxygenated methine $[\delta_{\rm H} 5.68/5.85 \text{ (each 1H, } s, \text{ H-12}), \ \delta_{\rm C} 98.1/98.4 \text{ (C-}$

12)], an angeloyloxyl group $[\delta_H 1.96 (6H, s, H-5'),$ 2.03 (6H, dq, J = 7.3 and 1.5 Hz, H-4'), 6.22 (2H, m, H-3'), $\delta_{\rm C}$ 16.0 (C-4'), 20.6 (C-5'), 125.8/126.1 (C-2'), 141.8/141.9 (C-3') 165.7 (C-1')], an angeloyloxylbearing methine [δ_H 6.23 (2H, s, H-6), δ_C 69.5/70.1 (C-6)], an α,β -unsaturated- γ -lactone [$\delta_{\rm C}$ 126.2/126.3 (C-7), 160.7/160.8 (C-11), 169.4 (C-8)] and a carbonyl carbon [$\delta_{\rm c}$ 213.3 (C-10)]. These spectral data and the molecular formula suggested that the most likely structure of this compound was 1. The structure was confirmed further by analysis of the CH long-range correlations from the HMBC spectrum (Fig. 1). The CI mass spectrum showed a $[M + H]^+$ ion at m/z 367 with losses of H_2O (m/z 349), angelic acid (m/z 267), angelic acid and H_2O (m/z 249). The stereostructure was determined by a NOESY spectrum and NOEs were observed between H-3 and H-6, H-14 and H-15 (Fig. 2). The NMR data showed that the material was a mixture of C-12 epimers (Table 1). Thus, secoeremopetasitolide A (1) was established as a secoeremophilane-type nor-sesquiterpenoid as depicted in the formula.

Compound 2 was isolated as an oil, $[\alpha]_D - 5.1^\circ$. The molecular formula was determined as $C_{21}H_{30}O_7$ by HR mass spectrometry. The IR spectrum of 2 suggested the presence of a hydroxyl group (3508 cm⁻¹), an α , β -unsaturated- γ -lactone (1766 cm⁻¹) and an α , β -unsaturated ester (1717 and 1645 cm⁻¹). The ¹H and ¹³C NMR (Table 1) spectra, with the aid of ¹H-¹H and showed signals due to a secondary methyl group [δ_H 1.12 (6H, d, d) = 7.0 Hz, H-14), d0 (5.15.9 (C-14)], a tertiary methyl group [δ_H 1.20 (6H, d), H-15), d0 (C-15)], an olefinic methyl group [δ_H 2.12 (6H, d), H-13), d0 (C-13)], a methoxyl group [δ_H 3.38 (6H, d), d0 (54.6), two oxygenated methines [δ_H 3.53 (2H, d0, d0, d0 (2.6 and 2.6 Hz, H-3), 5.76/5.80 (each

^{*}Part 8 in the series 'Studies on the Constituents of the Rhizomes of *Petasites japonicus* MAXIM.' For part 7 see ref. [5].

[†]Author to whom correspondence should be addressed.

Table 1.	¹ H	and	^{13}C	NMR	spectral	data	for	compounds	1 and 3	2

	1		2		
	'H	¹³ C	H	¹³ C	
1	2.52 (2H, m), 3.15 (2H, m)	36.5/36.8		13.9	
2		28.6/28.8		27.3	
3	4.56(2H, m)	67.1/67.4	3.53 (2H, dd, 2.6, 2.6)	74.8	
4	2.47 (2H, m)	40.6/40.8	1.58 (2H, q, 7.0)	39.1	
5		57.1/57.5	•	42.9	
6	6.23 (2H, s)	69.5/70.1	5.90 (2H, br s)	75†	
7		126.2/126.3*		126.6‡	
8		169.4		170†	
9			4.74 (2H, d, 2.6)	99.5	
10		213.3	1.48 (2H, br s)	36.9	
11		160.7/160.8		160†	
12	5.68 (1H, s), 5.85 (1H, s)	98.1/98.4	5.76 (1H, s), 5.80 (1H, s)	97†	
13	2.11 (6H, s)	12.9/13.0	2.12 (6H, s)	13.1/13.2	
14	0.95 (6H, d, 7.3)	10.0/10.2	1.12(6H, d, 7.0)	15.9§	
15	1.12 (6H, s)	16.2/16.4	1.20(6H, s)	16.6	
1'		165.7		167†	
2'		125.8/126.1*		126.6‡	
3'	6.22 (2H, m)	141.8/141.9	6.17 (2H, qq, 7.3, 1.5)	141.1	
4'	2.03 (6H, dq, 7.3, 1.5)	16.0	2.02 (6H, dq, 7.3, 1.5)	15.9§	
5'	1.96 (6H, s)	20.6	1.99 (6H, dq, 1.5, 1.5)	20.7	
OCH ₃			3.38 (6H, s)	54.6	

Coupling constants (J in Hz) are given in parentheses.

1H, s, H-12), $\delta_{\rm C}$ 74.8 (C-3), 97 (C-12)], an acetal group [$\delta_{\rm H}$ 4.74 (2H, d, J=2.6 Hz, H-9), $\delta_{\rm C}$ 99.5 (C-9)], an angeloyloxyl group [$\delta_{\rm H}$ 1.99 (6H, dq, J=1.5 and 1.5 Hz, H-5'), 2.02 (6H, dq, J=7.3 and 1.5 Hz, H-4'), 6.17 (2H, qq, J=7.3 and 1.5 Hz, H-3'), $\delta_{\rm C}$ 15.9 (C-4'), 20.7 (C-5'), 126.6 (C-2'), 141.1 (C-3'), 167

(C-1')], an angeloyloxy-bearing methine [$\delta_{\rm H}$ 5.90 (2H, brs, H-6), $\delta_{\rm C}$ 75 (C-6)] and an α,β -unsaturated- γ -lactone [$\delta_{\rm C}$ 126.6 (C-7), 160 (C-11), 170 (C-8)]. These spectral data and the molecular formula suggested that the most likely structure was 2 and this was further confirmed by the HMBC spectrum (Fig. 1). The CI

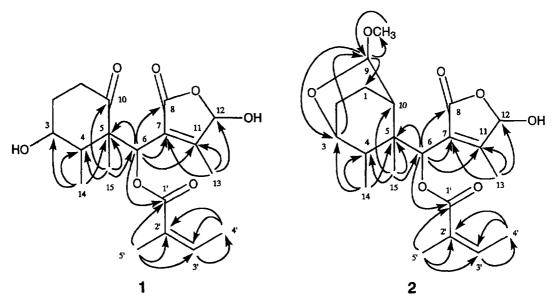


Fig. 1. Long-range correlations detected by HMBC of 1 and 2.

^{*}Assignments may be reversed.

[†]These carbons were detected by HMBC and the chemical shift values are approximate.

^{‡,§}Signals were overlapped.

Fig. 2. NOEs detected for 1 and 2.

mass spectrum of 2 showed a $[M + H]^+$ ion at m/z 395 with losses of H_2O (m/z 377), CH_3OH (m/z 363), angelic acid (m/z 295), angelic acid and CH₃OCHO (m/z 235). The stereostructure was determined by the NOESY spectrum, in which NOEs were observed between H-4 and H-6, H-9 and H-15, and H-9 and the methoxyl group. The material was an epimeric mixture at C-12, as was clearly indicated by the NMR spectral data (Table 1). Thus, 2 was established as a secoeremophilane-type sesquiterpenoid as depicted in the formula. This is the first example of a secoeremophilane derivative having a six-membered acetal ring formed between C-3 and C-9. A possible mechanism for the formation of 1 and 2 is shown in Scheme 1. Compounds 1 and 2 are presumably formed via the endoperoxide, the product of a reaction of the corresponding furanoeremophilane such as 3 and singlet oxygen [9]. Compounds 1 and 2 are the first secoeremophilane derivatives isolated from the genus Petasites.

EXPERIMENTAL

General. Mps: uncorr. ¹H and ¹³C NMR spectra were recorded at 400 and 100 MHz, respectively (in CDCl₃ soln, TMS as int. standard); CC: Kieselgel 60 (230–400 mesh, Merck); HPLC: pump, CCPD; detector, UV-8011 (Tosoh).

Plant material. The dried and chopped rhizomes of *P. japonicus* were purchased from Tochimoto Tenkaido Co. (Osaka, Japan) in 1990.

Extraction and isolation. The dried and chopped rhizomes of *P. japonicus* (3.0 kg) were extracted with MeOH at room temp. for 2 weeks. The MeOH extract was concd under red. pres. and the residue was suspended in a small excess of H₂O. This residue was

1

Scheme 1. Possible formation of 1 and 2.

extracted, successively, with CHCl₃, Et₂O, EtOAc and n-BuOH. The CHCl₃-soluble fr. was concd under red. pres. to afford a residue (112,5 g). This residue (60.0 g) was subjected to CC on silica gel using C₆H₆-EtOAc (9:1, 4:1, 7:3) and CHCl₃-MeOH (4:1), and the eluate was sepd into 4 frs (1-4). Fr. 4 was rechromatographed on a silica gel column using C₆H₆-EtOAc (3:2, 1:1, 2:3, 3:7) and CHCl₃-MeOH (9:1, 4:1), and the eludate was separated into 4 frs (frs 1'-4'). Fr. 2' was rechromatographed on a silica gel column using n-hexane-Me₂CO (5:4, 5:5, 4:5, 3:6) and Me₂CO, and the eluate was separated into 5 frs (1"-5"). Fr. 4" was sepd by prep. HPLC (column, TSK gel ODS-120T, 21.5 mm i.d. \times 30 cm; mobile phase, MeOH-H₂O (1:1); flow rate, 4.0 ml min⁻¹; UV detector, 220 nm) into 10 frs (frs 4"-1-4"-10). Fr. 4"-3 was sepd by prep. HPLC (column, TSK gel ODS-120T, 21.5 mm i.d. × 30 cm; mobile phase, MeOH-H₂O (1:2); column temp., 40°; flow rate, 4.0 ml min⁻¹; UV detector, 220 nm) into 3 frs (frs 4"-3-1-4"-3-3). Fr. 4"-3-2 was purified by prep. HPLC (column, TSK gel ODS-120T, 7.8 mm i.d. \times 30 m; mobile phase, MeOH-H₂O (1:3); column temp., 40°C; flow rate, 2.5 ml min⁻¹; UV detector, 220 nm) to give 1 (2.9 mg). Fr. 5" was purified by prep. HPLC (column, TSK gel ODS-120T,

21.5 mm i.d. \times 30 cm; mobile phase, MeOH-H₂O (1:1); column temp., 40°; flow rate, 4.5 ml min⁻¹; UV detector, 220 nm) to give **2** (3.9 mg).

Secoeremopetasitolide A (1). Needles (CHCl₃-MeOH). Mp 168–169°. $[\alpha]_{\rm D}^{26}$ –34.7° (MeOH; c 0.3). IR $\nu_{\rm max}^{\rm CHCl_3}$ cm⁻¹: 3495, 1764, 1703, 1645. UV $\lambda_{\rm max}^{\rm MeOH}$ nm (log ε): 213 (4.2). ¹H and ¹³C NMR: Table 1. HR-MS: m/z: 366.1704 ([M]⁺, calc. for C₁₉H₂₆O₇: 366.1678). CI-MS: m/z 367 [M + H]⁺, 349, 267, 249. Secoeremopetasitolide B (2). Oil. $[\alpha]_{\rm D}^{26}$ –5.1° (MeOH; c 0.4). IR $\nu_{\rm max}^{\rm CHCl_3}$ cm⁻¹: 3508, 1766, 1717, 1645. UV $\lambda_{\rm max}^{\rm MeOH}$ nm (log ε): 210 (4.1). ¹H and ¹³C NMR: Table 1. HR-MS: m/z 394.2004 ([M]⁺, calc. for C₂₁H₃₀O₇: 394.1992). CI-MS: m/z 395 [M + H]⁺,

Acknowledgements—The authors are grateful to Dr S. Suzuki, Dr K. Hisamichi and Mr S. Sato (Tohoku College of Pharmacy) for the measurements of mass spectra and NMR spectra.

377, 363, 295, 235.

REFERENCES

 Shanghai Scientific and Technological Publishers (1985) Dictionary of Chinese Materia Medica,

- p. 2386. Shougakukan, Tokyo.
- Yaoita, Y., Nagata, K., Suzuki, N. and Kikuchi, M. (1992) Chem. Pharm. Bull. 40, 3277.
- 3. Yaoita, Y. and Kikuchi, M. (1994) Chem. Pharm. Bull. 42, 1944.
- Yaoita, Y. and Kikuchi, M. (1995) Chem. Pharm. Bull., 43, 1738.
- 5. Yaoita, Y. and Kikuchi, M. (1996) Nat. Med., 50, 51.
- Yaoita, Y. and Kikuchi, M. (1994) *Phytochemistry* 37, 1765.
- 7. Yaoita, Y. and Kikuchi, M. (1994) *Phytochemistry* **37**, 1773.
- 8. Yaoita, Y. and Kikuchi, M. (1993) Tohoku Yakka Daigaku Kenkyu Nempo 40, 111.
- 9. Ahmed, M., Jakupovic, J., Bohlmann, F. and Niemeyer, M. H. (1991) *Phytochemistry* **30**, 2407.