

S0031-9422(96)00132-X

A 1,5-CIS-GUAIANOLIDE GLUCOSIDE FROM FLOWERS OF ARNICA MOLLIS

IRMGARD MERFORT,*† GÜNTER WILLUHN,* DETLEF WENDISCH‡ and DANIEL GONDOL‡

*Institut für Pharmazeutische Biologie, Heinrich-Heine-Universität Düsseldorf, Geb. 26.23, Universitätsstr. 1, D-40225 Düsseldorf, Germany; ‡Abteilung ZF-D Strukturforschung, Bayer AG Leverkusen, D-51368 Leverkusen, Germany

(Received 11 December 1995)

Key Word Index—*Arnica mollis*; Asteraceae; sesquiterpene lactone glucoside; guaianolide; pinoresinol glucoside; benzyl glucoside.

Abstract—The novel sesquiterpene lactone glucoside 2α -O- β -D-glucopyranosyl- 4α -hydroxy- 1α , 5α , 11α -H-guai-10(14)-en-12, 8α -olide (= 2α -hydroxy- 11α ,13-dihydro-1-epi-inuviscolide- 2α -O- β -D-glucopyranoside) was isolated from flowerheads of *Arnica mollis*. Its structural elucidation was carried out by NMR spectroscopy (1 H and 13 C NMR, 1 H- 1 H COSY, HMBC, HMQC and 1 H- 1 H NOESY) and mass spectrometry (DCI). Additionally, the lignan (+)-pinoresinol- 4 - 2 -D-glucopyranoside and benzyl- 2 -glucoside were isolated and identified.

INTRODUCTION

Previously we reported on the isolation and identification of two xanthanolide glucosides from flowerheads of *Arnica anplexicaulis* and *A. mollis*, which have been the first sesquiterpene lactone glycosides detected within the genus Arnica [1]. In continuation of our chemical study of this genus [2] we have now isolated a guainolide glucoside from a methanolic extract of the flowers from *A. mollis*, which, to the best of our knowledge, is described for the first time. The aglycone is also a new compound. Additionally, the lignan, (+)-pinoresinol-4'- β -D-glucopyranoside, and benzyl- β -glucoside were found in the plant.

RESULTS AND DISCUSSION

The DCI (NH₃) mass spectrum of the isolated sesquiterpene lactone glycoside displayed a quasimolecular ion at m/z 446 [M + NH₄]⁺ and fragment ions at m/z 428 [M - H₂O + NH₄]⁺, 284 [M - 162 + NH₄]⁺ and 266 [M - H₂O - 162 + NH₄]⁺, due to the elimination of H₂O and/or a hexose, from which a molecular mass of 426 and the molecular formula $C_{21}O_9H_{32}$ could be deduced. Acid hydrolysis on a TLC plate [3] gave glucose as the sugar moiety.

Structural elucidation was achieved by ¹H and ¹³C NMR spectroscopy, including ¹H-¹H COSY, HMQC and HMBC, which allowed the full assignment of all carbon and proton resonances. Additionally, the stereochemistry was determined by a ¹H-¹H NOESY spec-

trum. The ¹³C and ¹H NMR spectra (Tables 1 and 2) show the typical signals for a β -D-glucopyranose with the doublet for H-1' at δ 4.27 and the resonance for C-1' at δ 102.5, being linked to a secondary hydroxyl group at the aglycone [4, 5]. The remaining 'H NMR signals of the aglycone are in part similar to those of the 1,5-cis-guainolide, 11β ,13-dihydro-1-epi-inuviscolide, from Dittrichia graveolens [6]. Marked difference exist only in the chemical shifts and coupling patterns of the protons H-2, H-3 and H-5, which are explainable by the assumption that the additional Oglucoside moiety is located at C-2. Furthermore, the signals for H-7, H-8 and H-11 are shifted downfield (0.52, 0.28 and 0.39 ppm, respectively) compared to those of the above mentioned 11β , 13-dihydro-derivative, suggesting an 11β -oriented methyl group for which such downfield shifts are characteristic [1, 7, 8]. In the ¹³C NMR spectrum (Table 2) the signal for C-12 is located at δ 182.3, which is typical for a saturated lactone ring, indicating the absence of an exo-methylene group at C-11 [9]. The resonance of C-6 at δ 23.5 and C-13 at δ 9.9, which show a correlation with the signal for H-11 (at δ 2.66) in the HMBC spectrum, as well as that for C-13, correspond with those for C-6, C-11 and C-13 of the guaianolide 11α , 13-dihydro-2-Oacetyl-florilenalin (C-6: δ 22.9; C-11: δ 41.0, C-13: δ 9.9 [8]). From the HMQC spectrum the occurrence of two further quaternary carbons with δ 144.9 and 86.0 are deducible. Due to their chemical shifts and literature data [8] they have to be assigned to C-10 and C-4, respectively. Moreover, the HMBC spectrum exhibited long range couplings between the methylene protons H-14 and C-1 as well as C-9. The attachment of glucose to the hydroxyl at C-2 is confirmed by the long range coupling between H-1' and C-2.

[†]Address for correspondence: Institut für Pharmazeutische Biologie, Albert-Ludwigs-Universität Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany.

1094 I. Merfort et al.

Table 1. H NMR data for compound 1 (500 MHz, CD₃OD, TMS as internal standard)*

D	5 (Correlated	NOE SI H
Proton	δ (ppm)		J (Hz)	with H	NOE with H [†]
1	2.99	dd	11.8, 6.6	2, 5	5, 7, 9 α , 1'
2	4.63‡	ddd	11.8, 9.3, 7.1	$1, 3\alpha, 3\beta$	3β
3α	1.99	dd	9.3, 12.1	$2,3\beta$	3β , 5
3β	2.16	dd	7.1, 12.1	2.3α	2β , 15-H ₃ , 3α
5	2.43‡	m	6.6, 4.8, 13.6	$1,6\alpha,6\beta$	$1,6\alpha,7$
6α	1.78	dd(br)	4.8, 13.6	$5,6\beta$	$5, 6\beta, 7$
6β	1.07	ddd	13.6, 13.6, 10.6	$5, 6\alpha, 7$	$6\alpha, 8$
7	2.19-2.27	m	10.6, 10.8	6 β , 8	$1, 5, 6\alpha, 11$
8	4.07	ddd	10.8, 10.8, 4.9	$7,9\alpha,9\beta$	6β , 9β , 13-H,
9α	2.19-2.27	m	10.8, 11.5	$8,9\beta$	9β
9β	3.06	dd	4.9, 11.5	$8,9\alpha$	$8, 9\alpha, 14b$
11	2.66	dq \S	7.7, 7.7	7, 13	7, 13-H ₃
13	1.15	ď	7.7	11	8, 11
14a	5.28	S			
14b	5.18	S			
15	1.08	S			
1'	4.27	d	7.7	2'	
2'	3.11-3.15	m	8.8	3'	
3'	3.28	t	8.8, 8.8	2', 4'	
4'	3.23	t	8.8	3'	
5'	3.11-3.15	m	2.3, 6.0	6a', 6b'	
6a'	3.85	dd	2.3, 11.9	5, 6b'	
6b′	3.64	dd	6.0, 11.9	5, 6a'	

^{*}Assignments are based on ¹H-¹H COSY.

The α -configuration of H-1 and thus the evidence for a 1_{α} , 5_{α} -cis-guaianolide is given from $^3J_{1\alpha,5\alpha}=6.6$ Hz [7, 10], whereas in the case of a 1β , 5α -transguaianolide a value of 10 Hz or greater should be anticipated [11, 12]. This stereochemistry is confirmed by strong nOe effects between H-1 and H-5.

The configuration at C-2 (2 β -H) follows from ${}^{3}J_{1\alpha,2\beta}=11.8\,\mathrm{Hz}$ and the lacking of a nOe correlation

Table 2. ¹³C NMR data for compound 1 (125 MHz, CD₃OD, TMS as int. standard)*

А	glycone	Sugar		
Carbon	δ (ppm)	Carbon	δ (ppm)	
1	53.5	1'	102.5	
2	78.5	2'	75.3	
3	ca 48.5†	3'	78.7	
4	86.0	4'	72.0	
5	54.6	5'	78.5	
6	23.5	6′	62.8	
7	47.0			
8	78.5			
9	44.9			
10	144.9			
11	41.8			
12	182.3			
13	9.9			
14	116.6			
15	24.4			

^{*}Assignments are based on HMBC and HMQC.

between H-1 and H-2. Clear nOe correlations are observed between H-7 and H-11 as well as H-8 and 13-H₃, confirming the 11β -position of the methyl group at C-13. The absence of nOe correlation between H-7 and H-8 is in accordance with the $7\beta(12)$,8 α -trans-fusion of the lactone ring ($^3J_{7,8}=10.8$ Hz). The methyl group at C-4 is β -orientated, because no nOe correlation exists with H-5. Hence, the structure of the isolated sesquiterpene lactone is 2α -O- β -D-glucopyranosyl- 4α -hydroxy- 1α .5 α ,1 1α -H-guai-10(14)-en-12,8 α -olide (= 2α -hydroxy- 11α ,13-dihydro-1-epi-inuvisculide- 2α -O- β -D-glucopyranoside (1).

Additionally, benzyl- β -glucoside (2) [13, 14] and the lignan glycoside (+)-pinoresinol-4'- β -D-glucopyranoside (3) [15, 16] were isolated and the structures confirmed by their DCI mass spectral, ¹H NMR and

[†]From 'H-'H NOESY.

[‡]Not first-order signal.

[§]Pseudo-quintet.

[†]Hidden under solvent signals.

(lignan) ¹³C NMR and optical rotation data. Within the genus *Arnica* non-glycosylated (+)-pinoresinol has already been found in flowers of *A. angustifolia* [17] and roots of *A. chamissonis* ssp. *foliosa* [13] and benzyl- β -glucoside in the roots of the latter species [13].

EXPERIMENTAL

Plant material. See ref. [7]. A voucher specimen (No. 8.2) is deposited at the herbarium of the Institute for Pharmaceutical Biology, University of Düsseldorf.

Instrumentation. NMR: Bruker AMX 500, 500 MHz (¹H NMR) and 125 MHz (¹³C NMR) in CD₃OD, TMS as int. standard; MS: DCI, Finnigan INCOS 50, NH₃ as reactant gas (emitter heating rate 10 mA s⁻¹, calibration with FC43); TCL: silica gel 60_{F254}, EtOAc-HOAc-HCO₂H-H₂O (100:11:11:27), detection: anisaldehyde-H₂SO₄; sugar: silica gel 60_{F254}, EtOAc-MeOH-HOAc-H₂O (12:3:3:2), detection: thymol-H₂SO₄.

Extraction and purification of compounds. Dried and powdered flowerheads (2.02 kg) were exhaustively extracted with CHCl₃ (162 g) and then with MeOH (395.6 g). A 30-g portion of the MeOH extract was sepd by CC on Sephadex LH-20 with MeOH yielding a fr. with 1 and 2 (200 mg) and a fr. with 3 (700 mg). Sepn of the first fr. by CC on Sephadex LH-20 with cyclohexane-CH,Cl,-MeOH (4:7:1) followed by (4:7:2) gave a fr. with 2 (26 mg) from which 2 was isolated by CC on silica gel with EtOAc-n-hexane (10:19) and a fr. with 1 (18 mg), which was chromatographed on silica gel with mixts of EtOAc-n-hexane of increasing polarity, followed by EtOAc and finally by EtOAc-Me,CO (4:1). CC of the fr. containing 3 on Sephadex LH-20 with cyclohexane-CH₂Cl₃-MeOH (4:7:1) and subsequently (4:7:2) yielded 3. Isolated amounts: 1, 5 mg; 2, 4 mg; 3, 2.5 mg.

 2α -O- β -D-Glucopyranosyl- 4α -hydroxy- 1α , 5α , 11α -guai-10(14)-en-12, 8α -olide (1). Amorphous: R_j : 0.32; anisaldehyde- H_2SO_4 : violet turning through blue to green; MS (DCI) m/z (rel. int.): 446 [M + NH $_4$] $^+$ (100), 428 [M - H_2O + NH $_4$] $^+$ (3), 284 [M - 162 + NH $_4$] $^+$, (11), 266 [M - H_2O - 162 + NH $_4$] $^+$ (47), 180 [hexose - H_2O + NH $_4$] $^+$ (24), 162 [hexose - $2H_2O$ + NH $_4$] $^+$ (9) 1 H NMR: Table 1; 13 C NMR: Table 2.

Benzyl-β-glucoside (2). Amorphous; R_f : 0.60; anisaldehyde- H_2SO_4 : green; MS (DCI) m/z (rel. int.): 288 [M + NH₄]⁺ (100), 270 [M]⁺ (5), 180 [hexose – $H_2O + NH_4$]⁺ (14), 162 [hexose – $2H_2O + NH_4$]⁺ (5). ¹H NMR: refs [13, 14].

Compound 3. Amorphous; R_f : 0.38: anisaldehyde— H_2SO_4 : pink to violet; MS (DCI) m/z (rel. int.): 538 [M + NH₄]⁺ (37), 376 [M - hexose + NH₄]⁺ (22), 180 [hexose - H_2O + NH₄]⁺ (100), 162 [hexose - $2H_2O$ + NH₄]⁺ (35). ¹H and ¹³C NMR: refs [15, 16]. $[\alpha]_D^{20}$ ca +6 (EtOH).

Acknowledgements—We are grateful to Dr U. Matthiesen (Institut für Klinische Chemie und Laboratoriumsdiagnostik, Heinrich-Heine-Universität Düsseldorf) for the DCI mass spectra and Mrs E. Müller for experimental assistance.

REFERENCES

- Paßreiter, C. M., Merfort, I., Bestendonk, C., Willuhn, G. and Steigel, A. (1996) *Planta Med.* 62, 39
- Willuhn, G., Merfort, I., Paßreiter, C. M. and Schmidt, T. J. (1995) in *Advances in Compositae Systematics* (Hind, D. J. N., Pope, G. V. and Jeffrey, C., eds), Vol. 1, p. 167. The Royal Botanic Gardens, Kew.
- Merfort, I. and Wendisch, D. (1987) Planta Med. 53, 434.
- 4. Wehrli, F. W. and Nishida, T. (1979) Prog. Chem. Org. Nat. Prod. 1.
- Kasai, R., Suzuo, M., Asakawa, J. and Tanaka, O. (1977) Tetrahedron Letters 2, 175.
- Rustaiyan, A., Jakupovic, J., Chau-Thi, T. V., Bohlmann, F. and Sadjadi, A. (1987) *Phytochemistry* 26, 2603.
- Marcinek-Hüpen-Bestendonk, C., Willuhn, G., Steigel, A., Wendisch, D., Middelhauve, B., Wiebcke, M. and Mootz, D. (1990) *Planta Med.* 56, 104.
- Schmidt, T. J., Willuhn, G., Steigel, A. and Wendisch, D. (1995) Planta Med. 61, 544.
- Youssef, D. and Frahm, A. W. (1994) *Planta Med.* 60, 572.
- 10. Bohlmann, F. and Zdero, C. (1978) *Phytochemistry* **17**, 2032.
- Zdero, C., Bohlmann, F., King, R. M. and Robinson, H. (1986) *Planta Med.* 52, 22.
- 12. Zdero, C., Bohlmann, F., King, R. M. and Robinson, H. (1987) *Phytochemistry* **26**, 1207.
- Stausberg, S. (1994) Thesis, University of Düsseldorf, Germany.
- Miyase, T., Ueno, A., Takizawa, N., Kobayashi, H. and Karasawa, H. (1987) Chem. Pharm. Bull. 35, 1109.
- van de Velde, V., Lavie, D., Gottlieb, H. E., Perold, G. W. and Scheinmann, F. (1984) J. Chem. Soc., Perkin Trans. I 1159.
- Chiba, M., Okabe, K., Hisada, S., Shima, K., Takemoto, T. and Nishibe, S. (1979) Chem. Pharm. Bull. 27, 2868.
- Schmidt, T. J., Willuhn, G., Wendisch, D. and Steigel, A. (1993) *Planta Med.* **59** (Suppl. 1), A 598.