

#### S0031-9422(96)00069-6

# OLIGOSTILBENES FROM VITIS HEYNEANA

WEN-WU LI,\* LI-SHENG DING,† BO-GANG LI† and YAO-ZU CHEN\*‡

\*Department of Chemistry, Zhejiang University, Hangzhou 310027, China; †Chengdu Institute of Biology, Academia Sinica, Chengdu 610041, China

(Received 6 November 1995)

**Key Word Index**—*Vitis heyneana*; Vitaceae; stems; stereochemistry; oligostilbenes; heyneanol A; ampelopin C; ampelopsin A; (+)- $\varepsilon$ -viniferin; structural elucidation.

**Abstract**—A novel tetrastilbene, heyneanol A, was isolated from stems of *Vitis heyneana* together with the previously known ampelopsin C, ampelopsin A and (+)-e-viniferin. Its complex polycyclic structure was elucidated by 1D and 2D NMR analyses.

#### INTRODUCTION

Vitis heyneana Roem. & Schult (V. quinquangularis Rehd.) is a traditional drug used for the treatment of arthritis, fever, carbuncles and inflammatory conditions [1]. So far, the chemical composition of this genus has never been reported. We now report on the isolation and structural determination of a tetrastilbene, heyneanol A (1), along with a tristilbene, ampelopsin C (2) [2] and two distilbenes, amelopsin A (3) [2] and (+)- $\varepsilon$ -viniferin (4) [3] from the stems of V. heyneana.

## RESULTS AND DISCUSSION

Compound 1 was isolated as a brown solid  $\{ [\alpha]_D - 53^\circ \text{ (methanol; } c \text{ 0.31} \}$ , together with the previously known compounds 2–4. Compound 1 showed a  $\{M+1\}^+$  ion at m/z 907 (FAB mass spectrum) in agreement with the molecular formular  $C_{56}H_{42}O_{12}$ . This was supported by the  $^{13}C$  and  $^{1}H$  NMR spectra. This formula corresponds to a tetrastilbene. The UV and IR spectra showed similar patterns to those of other vitis oligostilbenes [4]. The 2D-NMR spectra including HH-, CH- and long-range C-H COSY of 1 allowed assignment of all proton and carbon signals (Tables 1 and 2). The planar structure was deduced mainly from the long-range C-H COSY results.

The relative configuration of 1 was established by NOESY. The *trans*-orientation of the two aryls on ring  $A_3$  was deduced from the NOEs between H-7a/H-10(14)a and H-8a/H-2(6)a. Two similar relationships were observed for the protons on ring B and D. The spatial relationship between rings  $A_3$  and  $B_3$  was

determined by NOESY. The presence of NOEs between H-8a and H-8b indicated the spatial vicinity of these protons. Furthermore, the fact that the <sup>1</sup>H NMR signals of H-10(14)a and H-2(6)b appear at relatively higher field is accounted for by the overlapping of rings A, and B<sub>1</sub>. Hence, we determined that the relative configuration between rings  $A_3$  and  $B_3$  was rel-(8aS, 8bR). (+)- $\varepsilon$ -Viniferin  $\{4, [\alpha]_D + 39^\circ \text{ (circular dichroism: }$  $\Delta \varepsilon_{322}$  = -2.06,  $\Delta \varepsilon_{287}$  = 1.72,  $\Delta \varepsilon_{260}$  +2.41,  $\Delta \varepsilon_{235}$  +17.71)} was identified by <sup>1</sup>H and <sup>13</sup>C NMR and its absolute configuration was determined to be 7aS, 8aS in comparison with (-)- $\varepsilon$ -viniferin [3]. On biogenetic grounds, we deduce that 1 was formed by the coupling of two (+)- $\varepsilon$ -viniferin molecules and that its absolute configuration may be deduced as 7aS, 8aS, 7bR, 8bR, 7dS, 8dS. The stereostructure of 1 was thus concluded to be as shown in Fig. 1.

# EXPERIMENTAL

<sup>1</sup>H and <sup>13</sup>C NMR; Me<sub>2</sub>CO-d<sub>6</sub> using TMS as int. standard.

Isolation. Stems of V. heyneana were collected from Junlian, Sichuan Province, China, in October, 1994, and identified by Prof. Chao-Luan Li, Chengdu Institute of Biology. A voucher specimen is deposited in Chengdu Institute of Biology. The dried stems (2.5 kg) were extracted with EtOH. The EtOH extracts were concd under red, pres. and fractionated by a series of solvent partitions into an EtOAc-soluble phenolic fr. The residue (50 g) of this fr. was fractionated first by CC and finally by TLC (silica gel) giving 1 (200 mg), 2 (650 mg), 3 (27 mg) and 4 (25 mg).

1164 Wen-Wu Li et al.

Table 1. <sup>1</sup>H NMR data for compounds 1-4 (400 MHz)

| Н       | 1                | 2                 | 3                | 4                    |
|---------|------------------|-------------------|------------------|----------------------|
| 2(6)a   | 7.25d(8.6)       | 7.18d(8.4)        | 6.91d(8.4)       | 7.21 <i>d</i> (7.0)  |
| 3(5)a   | 6.92d(8.6)       | 6.68d(8.4)        | 6.66d(8.4)       | 6.83d(7.0)           |
| 7a      | 5.42d(5.0)       | 5.26d(2.9)        | 5.46d(5.1)       | 5.44d(5.4)           |
| 8a      | 4.52d(5.0)       | 3.62dd(11.7, 2.9) | 5.41 <i>br</i> s | 4.46d(5.4)           |
| 10a     | 6.11d(2.2)       |                   |                  | 6.24 <i>br</i> s     |
| 12a     | 6.23t(2.2)       | 6.17 <i>s</i>     | 6.16d(2.0)       | 6.24 <i>br</i> s     |
| 14a     | 6.11d(2.0)       |                   | 6.63d(2.0)       | 6.24 <i>br s</i>     |
| 2(6)b   | 6.59d(8.6)       | 7.25d(8.4)        | 7.11d(8.4)       | 7.19d(7.0)           |
| 3(5)b   | 6.63d(8.6)       | 6.80d(8.4)        | 6.77d(8.4)       | 6.74d(7.0)           |
| 7b      | 5.55d(5.0)       | 5.83d(11.7)       | 5.76d(11.7)      | 6.91d(16.2)          |
| 8b      | 4.32d(5.0)       | 4.45d(11.7)       | 4.17d(11.7)      | 6.71 <i>d</i> (16.2) |
| 12b     | 6.33d(2.0)       | 6.33d(2.0)        | 6.42d(2.0)       | 6.33d(2.0)           |
| 14b     | 6.25d(2.0)       | 6.18d(2.0)        | 6.23d(2.0)       | 6.77d(2.0)           |
| 2c      | 6.83d(2.0)       | 7.01d(8.4)        |                  |                      |
| 3c      |                  | 6.72d(8.4)        |                  |                      |
| 5c      | 6.77d(8.6)       | 6.72d(8.4)        |                  |                      |
| 6c      | 7.17dd(8.6, 2.0) | 7.01d(8.4)        |                  |                      |
| 7c      | 6.77d(15.6)      | 4.23d(9.4)        |                  |                      |
| 8c      | 6.65d(15.6)      | 3.79dd(11.7, 9.4) |                  |                      |
| 10c     |                  | 6.24d(2.0)        |                  |                      |
| 12c     | 6.33d(2.0)       | 6.18t(2.0)        |                  |                      |
| 14c     | 6.67d(2.0)       | 6.24d(2.0)        |                  |                      |
| 2(6)d   | 7.19d(8.6)       |                   |                  |                      |
| 3(5)d   | 6.83d(8.6)       |                   |                  |                      |
| 7d      | 5.39d(5.5)       |                   |                  |                      |
| 8d      | 4.44d(5.5)       |                   |                  |                      |
| 10(14)d | 6.21d(2.0)       |                   |                  |                      |
| 12d     | 6.24d(2.0)       |                   |                  |                      |

Table 2. <sup>13</sup>C NMR data for compounds 1-4 (100 MHz)

| С     | 1     | 2     | 3     | 4     | С       | 1     | 2     |
|-------|-------|-------|-------|-------|---------|-------|-------|
| la    | 134.1 | 133.1 | 129.7 | 133.6 | 1c      | 131.7 | 133.1 |
| 2(6)a | 127.7 | 130.5 | 128.7 | 127.9 | 2c      | 125.4 | 129.6 |
| 3(5)a | 116.1 | 115.9 | 115.6 | 116.0 | 3c      | 132.5 | 116.2 |
| 4a    | 158.1 | 155.7 | 159.0 | 157.9 | 4c      | 159.7 | 155.7 |
| 7a    | 94.0  | 61.7  | 44.1  | 93.6  | 5c      | 110.5 | 116.2 |
| 8a    | 57.1  | 48.3  | 71.3  | 57.0  | 6c      | 126.4 | 129.6 |
| 9a    | 147.1 | 144.7 | 140.8 | 147.1 | 7c      | 130.9 | 52.6  |
| 10a   | 106.9 | 125.0 | 118.7 | 106.8 | 8c      | 124.0 | 37.7  |
| 11a   | 160.2 | 159.2 | 160.0 | 159.5 | 9c      | 136.2 | 141.5 |
| 12a   | 102.1 | 102.3 | 97.4  | 101.9 | 10c     | 119.7 | 121.6 |
| 13a   | 160.2 | 157.6 | 159.6 | 159.5 | 11c     | 162.4 | 159.9 |
| 14a   | 106.9 | 107.2 | 110.9 | 106.8 | 12c     | 96.6  | 97.1  |
| 1b    | 132.1 | 132.7 | 132.4 | 129.9 | 13c     | 159.7 | 159.1 |
| 2(6)b | 127.5 | 130.5 | 129.8 | 128.4 | 14c     | 104.5 | 106.0 |
| 3(5)b | 115.9 | 115.9 | 116.1 | 116.1 | ld      | 133.7 |       |
| 4b    | 157.9 | 155.7 | 158.0 | 157.9 | 2(6)d   | 127.8 |       |
| 7b    | 91.3  | 90.6  | 88.5  | 129.9 | 3(5)d   | 116.3 |       |
| 8b    | 52.0  | 58.0  | 49.5  | 123.2 | 4d      | 157.7 |       |
| 9b    | 141.9 | 147.9 | 142.7 | 136.1 | 7d      | 94.0  |       |
| 10b   | 119.8 | 129.9 | 118.8 | 119.5 | 8d      | 57.0  |       |
| 116   | 162.3 | 159.1 | 156.5 | 162.2 | 9d      | 147.2 |       |
| 12b   | 96.5  | 102.3 | 101.9 | 96.6  | 10(14)d | 106.9 |       |
| 13b   | 159.4 | 156.7 | 156.5 | 159.2 | 11(13)d | 159.9 |       |
| 14b   | 106.9 | 107.2 | 105.4 | 104.0 | 12d     | 102.4 |       |

1

2

HO 3a 2a H OH HO 7a 8c 14a OH HO 3b 5b H

3

Fig. 1. Structures of compounds 1-4.

Heyneanol A (1). Brown solid. [α]<sub>D</sub> -53° (MeOH; c 0.30). FABMS m/z: 907 [M+1]<sup>+</sup>; IR  $\nu_{\rm max}$  cm<sup>-1</sup>: 3388, 1612, 1516, 1448, 1296, 961, 832, 758; UV (nm, MeOH): 284, 320. <sup>1</sup>H and 13C NMR: Tables 1 and 2. Apelopsin C (2). Brown solid. FABMS m/z: 681 [M+1]<sup>+</sup>. <sup>1</sup>H and <sup>13</sup>C NMR: Tables 1 and 2.

Ampelopsin A (3). Brown solid. FABMS m/z: 471 [M+1]<sup>+</sup>. <sup>1</sup>H and <sup>13</sup>C NMR; Tables 1 and 2. (+)-ε-Viniferin (4), Brown solid [ $\alpha$ ]<sub>D</sub> +39° (MeOH; c 0.40), CD:  $\Delta \varepsilon_{322}$  =2.06,  $\Delta \varepsilon_{287}$  =1.72,  $\Delta \varepsilon_{260}$  +2.41,  $\Delta \varepsilon_{235}$  +17.71. <sup>1</sup>H and <sup>13</sup>C NMR: Tables 1 and 2.

### REFERENCES

- 1. Jiang Su New Medical College (1985) *Dictionary of Chinese Traditional Medicine*, p. 396. Shanghai Science and Technology Press, Shanghai.
- Oshima, Y., Ueno, Y. and Hikion, H. (1990) Tetrahedron 46, 5121.
- Kurihara, H., Kawabata, T., Ichikawa, S., Mishima, M. and Mizutani, J. (1991) *Phytochemistry* 30, 649.
- Oshima, Y., Kamijiou, A., Moritani, H., Namao, K. and Oshizumi, Y. (1993) J. Org. Chem. 58, 850.