

S0031-9422(96)00045-3

SYNTHESIS AND CONFIRMATION OF STRUCTURE OF THREE 13,15 β -DIHYDROXY C-20 GIBBERELLINS, GA₁₀₀, GA₁₀₁ AND GA₁₀₂, ISOLATED FROM THE SEEDS OF HELIANTHUS ANNUUS L.

David J. Owen, Lewis N. Mander,* Paul Gaskin† and Jake Macmillan†

Research School of Chemistry, Australian National University, G.P.O. Box 4, Canberra, ACT, 2601, Australia; †IACR-Long Ashton Research Station, Department of Agricultural Sciences, University of Bristol, Long Ashton, Bristol, BS18 9AF, U.K.

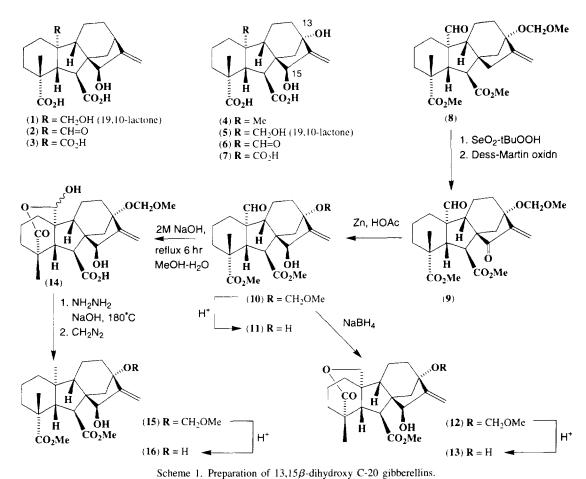
(Received 14 November 1995)

Key Word Index—Helianthus annuus; Compositae; sunflower seeds; 13,15β-dihydroxylated C-20 gibberellins; GA₁₀₀, GA₁₀₁ and GA₁₀₂; synthesis; selenium dioxide oxidation; Wolff-Kishner reduction.

Abstract—The structures of three $13,15\beta$ -dihydroxylated C-20 gibberellins isolated from the seeds of *Helianthus* annuus have been confirmed by partial synthesis of authentic samples from gibberellic acid and GC-mass spectral comparison with the endogenous samples.

INTRODUCTION

Thirteen 15β -hydroxy gibberellins have been isolated from the seeds of the sunflower (Helianthus annuus L.) and their structures established [1, 2]. Three of these gibberellins GA_{64} (1), GA_{65} (2) and GA_{66} (3), were identified as C-20 derivatives and their structures established by metabolic transformation of 15β -hydroxykaur-16-en-19-oic acid with cultures of Gibberella fujikuroi (B1-41 a mutant). The putative structures, 15β -hydroxy GA_{53} (4), 15β -hydroxy GA_{41} (5), 15β -hydroxy-GA₁₉ (**6**), and 15β -hydroxy GA₁₇ (**7**), were assigned to four further C-20 gibberellins, but attempts to confirm these structures by similar metabolism of $13,15\beta$ - dihydroxykaur - 16 - en - 19 - oic acid were unsuccessful [1]. We have therefore undertaken the syntheses of compounds 4-7 from the readily available fungal gibberellin, gibberellic acid, in order to confirm the tentative structural assignments. The successful completion of the syntheses is described in this paper.


RESULTS AND DISCUSSION

The GA₁₉ derivative **8** is available in eight steps from gibberellic acid [3, 4] and serves as a common intermediate for the preparation of all four targets, following the well-established protocol for the introduction of the 15β -hydroxyl [2, 5, 6], although with some useful improvements to the original procedures.

*Author to whom correspondence should be addressed.

Thus, allylic oxidation of 8 with selenium dioxide and t-butylhydroperoxide under sonication readily yielded the 15α -hydroxy derivative. Because of the ease with which the 15α -hydroxy group is prone to react with the 7-methyl ester function to form the $7,15\alpha$ -lactone, the material was used directly without purification and oxidized to the enone 9 by the Dess-Martin procedure [7], which was found to be more reliable than the Swern method [8] used previously. In this way, the enone 9 was isolated cleanly in an overall yield of 80% from the two steps. Characteristic 'H NMR resonances for the C-17 olefinic protons at δ 5.45 and 6.08, combined with the appearance of the carbonyl resonance at δ 205.1 in the ¹³C NMR spectrum, were consistent with the enone structure. For the 1,2-reduction of gibberellin 16-en-15-ones to allylic alcohols, the use of zinc and acetic acid [5, 6] has been shown to be superior to the hydride-lanthanide reagents more commonly employed for this transformation [9], although the yield deteriorates when applied to some C-19 GAs containing 13-oxygen substituents, especially with polyhydroxylated GAs [2]. It was therefore a pleasant surprise when the enone 9 was reduced to the desired 15 β -hydroxy compound 10 in 91% yield.

Treatment of aldehyde 10 with Dowex resin in methanol under reflux [10] efficiently removed the methoxymethyl protecting group in 80% yield, thereby providing the first of the target compounds, 15\beta-hydroxy GA₁₉ dimethyl ester (11) (57% overall yield from the starting aldehyde 8). Reduction of the aldehyde 10 with sodium borohydride in methanol at 0°C cleanly provided the expected 15β-hydroxy GA₄₄ derivative 12 in 67% yield, and then removal of the methoxymethyl protecting group by treatment with 922 D. J. Owen et al.

Dowex resin in methanol under reflux yielded 15β -hydroxy GA_{44} methyl ester (13), in 77% yield.

The synthesis of the dimethyl ester of 15β -hydroxy GA_{53} (6) was based on the conditions optimized for the synthesis of the parent GA_{53} [11]. Thus, hydrolysis of the dimethyl ester 10 to 14, followed by Wolff–Kishner reduction at the carefully regulated temperature of 180° and treatment of the crude product with diazomethane, yielded the 15β -hydroxy GA_{53} derivative 15 in 35% yield. The identity of the product was apparent from the 1 H NMR spectrum which showed characteristic resonances for the 15α -proton at δ 4.02, and the 10α -methyl group at δ 0.69. Finally, treatment of compound 15 with Dowex resin in methanol under reflux yielded the desired 15β -hydroxy GA_{53} dimethyl ester (16) in 67% yield.

While the synthesis of the trimethyl ester of 15β -hydroxy- GA_{17} (7) was not attempted, GC-mass spectral analysis of the bis(trimethylsilyl) derivative of 15β -hydroxy GA_{19} dimethyl ester 11 revealed a substantial amount of an impurity characteristic of the (trimethylsilyl) trimethyl ester derivative of 15β -hydroxy GA_{17} (7), indicating that some of the aldehyde 11 had undergone auto-oxidation. GC-mass spectral analysis of trimethylsilyl methyl ester derivatives of all four compounds matched well with those obtained from

the natural source (Table 1) and GA-numbers are therefore allocated as follows: GA_{100} to 15β -hydroxy GA_{53} (4); GA_{101} to 15β -hydroxy GA_{44} (5); and GA_{102} to 15β -hydroxy GA_{19} (6) [12]. (Gibberellin GA_{99} has been assigned to 2β -hydroxy GA_{19} , the identity of which has been confirmed by synthesis from gibberellic acid [13].)

The ¹H and ¹³C NMR data for the new gibberellins are shown in Tables 2 and 3, respectively. Although the identification of 15β -hydroxy GA_{17} in seeds of H. annuus is not in doubt, allocation of a GA-number of this GA must await its full chemical characterizations.

EXPERIMENTAL

General. IR spectra were recorded on CDCl₃ solns on a Perkin-Elmer 683 infrared spectrophotometer. NMR spectra were recorded on Varian Gemini 300 and VXR 300 spectrometers. Chemical shifts (δ ppm) are measured relative to the residual peak of CHCl₃ (7.26 ppm) for ¹H spectra or the central peak of CDCl₃ (77.0 ppm) for ¹³C spectra. Distortionless enhancement by polarization transfer (DEPT) and the attached proton test (APT) were used in the assignment of ¹³C spectra. Low-resolution EI-mass spectra (70 eV) were recorded on a VG Micromass 7070F double focusing mass

Table 1. Comparison of Kovats retention indices and relative intensities of characteristic ions for methyl TMSi derivatives of GA_{100} , GA_{101} and GA_{102}

Identified compound	Kovats retention index*	Diagnostic	ion:	s (m/	'z) w	ith 9	& abı	ındar	ice ii	ı refe	erenc	e an	d sar	nple								
15β-OH GA ₅₃ Me TMSi		Ion	229	244	296	324	348	386	414	446	476	504	521	536								
(GA ₁₀₀ -Me-TMSi)	2567	Reference	100	70	60	12	16	32	18	27	29	8	18	28								
Helianthus annuus	2576	Sample	96	100	83	21	18	49	37	31	43	12	16	37								
15β-OH GA ₄₄ Me TMSi		Ion	147	229	244	269	281	295	371	415	430	461	489	492	505	520						
(GA ₁₀₁ -Me-TMSi)	2856	Reference	36	100	35	15	14	82	22	12	75	11	9	7	35	95						
Helianthus annuus	2865	Sample	22	100	30	16	15	93	21	8	59	8	3	4	23	54						
15β-OH GA ₁₉ Me TMSi		Ion	181	223	229	244	282	296	313	372	400	428	432	461	490	493	522	535	550			
(GA ₁₀₂ -Me-TMSi)	2669	Reference	23	36	89	43	34	28	33	84	45	21	63	18	32	26	100	31	22			
Helianthus annuus	2680	Sample	19	31	92	39	43	67	35	100	51	24	63	21	31	25	88	27	15			
15β-OH GA ₁₇ Me TMSi		lon	147	221	229	244	281	295	311	339	370	371	399	430	458	460	490	520	521	548	565	580
(impurity in 15β-OH GA ₁₉)	2632	Reference	33	16	74	41	23	100	22	17	38	46	28	51	21	23	16	25	26	14	16	44
Helianthus annuus	2640	Sample	12	10	62	30	16	100	11	13	32	25	21	42	15	22	8	16	19	10	10	22

^{*}The KRIs are slightly different as a consequence of carrying out the experiments on different columns (the column used for the original isolations had been discarded prior to the completion of the syntheses).

Table 2. 1 H NMR spectral data for methyl esters of GA_{100} (16), GA_{101} (13) and GA_{102} (11)

Н	GA_{+00} (16)	GA ₁₀₁ (13)	$GA_{102}(11)$
5	1.81 d (12.6)	2.13 d (12.7)	2.12 d (13.0)
6	3.39 d (12.6)	2.82 d (12.7)	3.94 d (13.0)
15	$4.08 \ m$	4.05 br s	4.14 m
17	5.25 d (2.6)	5.24 d (2.6)	5.26 d (2.5)
	5.35 d (3.0)	5.37 d (3.0)	5.34 d (3.0)
18	1.05 s	1.10 s	1.09 s
20	0.68 s	4.15 d (13.2)	9.64 s
		4.37 dd (13.2, 2.2)	
CO ₂ CH ₃	3.67, 3.76 s	3.76 s	3.63, 3.79 s

Table 3. 13 C NMR spectral data for methyl esters of GA_{100} (16), GA_{101} (13) and GA_{102} (11)

C	GA ₁₀₀ (16)	GA ₁₀₁ (13)	GA ₁₀₂ (11)
1	37.5	37.65	32.4
2	19.5	20.6	20.7
3	39.1	39.1	37.5
4	43.4	42.6	45.2
5	59.3	52.7	58.2
6	44.9	43.8	44.8
7	176.9	176.3	176.3
8	53.3	53.0	53.2
9	51.5	55.0	50.0
10	44.6	41.1	59.3
11	17.6	15.9	18.1
12	39.3	39.8	39.2
13	75.7	76.7	76.3
14	43.9	41.2	42.2
15	76.7	76.6	76.4
16	157.6	158.2	157.5
17	108.3	109.1	109.0
18	28.5	22.9	27.8
19	177.8	174.9	177.8
20	15.2	75.1	205.6
OCH ₃	50.8	53.0	51.7
	52.3		52.6

spectrometer. Flash chromatography was carried out on Merck Kieselgel 60.

Dimethyl ent-13-methoxymethoxy-15,20-dioxogibberell-16-ene-7,19-dioate (9). SeO₂ (50 mg, 0.450 mmol, 3.3 eq.), followed by one drop of t-BuOOH soln were added to a soln of aldehyde 8 (59 mg, 0.145 mmol) in dry CH₂Cl₂ (5 ml). The mixture was sonicated for 3 hr, then diluted with EtOAc (30 ml) and washed with dilute HCl (10 ml) and H₂O (10 ml). The combined aq. phases were extracted with EtOAc (2× 10 ml). The combined organic phases were washed with aq. NaHCO₃ (10 ml), dried over Na₂SO₄, filtered, and the solvent was removed in vacuo. The 15α hydroxy compound (60 mg, 0.136 mmol) was dissolved in dry CH₂Cl₂ (15 ml) and Dess-Martin reagent (116 mg, 0.273 mmol, approx. 2 eq.) was added. After 10 min the reaction appeared as a cloudy white soln. The reaction mixt. was diluted with CH₂Cl₂ (20 ml) and satd NaHCO3 soln containing 7% sodium thiosulphate (20 ml) added. The mixt, was stirred for 20 min, the layers were sepd and the organic phase was washed with NaHCO₃ soln $(2 \times 10 \text{ ml})$, followed by brine (15 ml), then dried over Na₂SO₄ and the solvent removed in vacuo. Purification by silica gel CC (hexane-EtOAc, 3:1) yielded the desired enone 9 (49 mg, 80% from 8) as a white foam. IR cm⁻¹: 1750, 1725, 1715. ¹H NMR (300 MHz, CDCl₃): δ 1.32 (3H, s, H-18), 2.43 (1H, d, J = 12.3 Hz, H-5), 3.41 (3H, s, OCH_2OCH_3), 3.63 (2 × 3H, s, CO_2CH_3), 3.93 (1H, d, $J = 12.8 \text{ Hz}, \text{ H-6}, 4.68, 4.80 (2 \times 1\text{H}, ABd, J =$ 7.3 Hz, OCH₂OCH₃), 5.45 (1H, s, H-17), 6.08 (1H, s, H-'17), 9.71 (1H, s, H-20). ¹³C NMR (75 MHz, CDCl₃): δ 19.0 (C-11), 20.4 (C-2), 29.0 (C-18), 32.5 (C-3), 35.9 (C-1), 37.7 (C-12), 38.9 (C-14), 45.6 (C-4), 48.4 (C-6), 51.5, 51.6 (7-CO₂CH₃, 19-CO₂CH₃), 52.7 (C-9), 54.8 (CH₂OCH₃), 55.6 (C-5), 59.6 (C-8), 61.1 (C-10), 80.3 (C-13), 91.5 (OCH₂OCH₃), 117.0 (C-17), 149.9 (C-16), 172.1, 176.8 (C-7, C-19), 203.5 (C-15), 205.1 (C-20). EI-MS m/z (rel. int.): 420 [M – CO]

D. J. OWEN et al.

(24), 388 (52), 360 (56), 344 (38), 326 (46), 315 (60), 299 (94), 285 (52), 255 (100), 239 (62), 227 (54), 145 (50), 111 (70), 91 (66), 55 (100). HREI-MS m/z calcd for $[M-CO]^+$ $C_{23}H_{32}O_7$; 420.2148; found 420.2150.

Dimethyl ent-15α-hydroxy-13-methoxymethoxy-20oxogibberell-16-ene-7,19-dioate (10). To a soln of enone **9** (49 mg, 0.109 mmol) in benzene (10 ml) was added AcOH (5 ml) and freshly activated Zn (100 mg). The reaction mixt. was then sonicated for 1 hr, after which time TLC analysis indicated that the reaction was complete. The mixt, was filtered through a small pad of celite and washed thoroughly with Et₂O (30 ml). The organic phase was washed with H₂O (10 ml), NaHCO₃ soln (10 ml) and brine (10 ml). The organic phase was dried over Na2SO4, and the solvent was removed in vacuo. Purification by silica gel CC (hexane-EtOAc, 2:1) yielded the desired 15β -hydroxy compound 10 (45 mg, 91%) as a foam, plus a small amount of the 1,4 reduction product that could not be removed by flash chromatography. IR cm⁻¹: 1715. H NMR (300 MHz, CDCl₃): δ 1.08 (3H, s, H-18), 2.10 $(1H, d, J = 12.8 \text{ Hz}, H-5), 3.35 (3H, s, -OCH_2OCH_3),$ 3.63, 3.79 (2 × 3H, s, -CO₂CH₃), 3.92 (1H, d, J =12.8 Hz, H-6), 4.07 (1H, m, H-15), 4.53, 4.76 (2 × 1H, ABd, J = 7.3 Hz, $-\text{OCH}_2\text{OCH}_3$), 5.23 (1H, s, H-17), 5.31 (1H, s, H-'17), 9.65 (1H, s, H-20). ¹³C NMR (75 MHz, CDCl₃): δ 17.8 (C-11), 20.7 (C-2), 27.6 (C-18), 32.4 (C-3), 37.6 (C-1), 38.6 (C-12), 38.8 (C-14), (C-4 not observed), 45.1 (C-6), 50.1 (C-9), 51.7, 52.7 (CO₂CH₃), 52.6 (C-8), 55.4 (OCH₂OCH₃), 58.4 (C-5), 59.3 (C-10), 76.9 (C-15), 81.5 (C-13), 91.9 (OCH₂OCH₃), 109.9 (C-17), 153.7 (C-16), 176.2, 178.0 (C-7, C-19), 205.7 (C-20). EI-MS (rel. int.): 418 $[M - CH_3OH]^+$ (16), 373 (15), 356 (26), 328 (28), 300 (30), 285 (34), 267 (28), 239 (26), 227 (100), 195 (30), 165 (32), 145 (28), 91 (32), 55 (30), HREI-MS m/z calcd for $[M - CH_3OH]^+$, $C_{23}H_{30}O_7$: 418.1992; found 418.1990.

Dimethyl ent - 15α , 13 - dihydroxy - 20 - oxogibberell -16-ene-7,19-dioate (11) (GA_{102} methyl ester). Dowex 50W-X2 resin (80 mg of wet resin) was added to a soln of the aldehyde 10 (10 mg, 0.022 mmol) in MeOH (3 ml) and H₂O (0.5 ml). The reaction mixt. was then heated under reflux for 3 hr. After cooling the reaction mixture was diluted with EtOAc (50 ml) and filtered through a pad of celite. The filtrate was then washed with brine (10 ml), dried over Na₂SO₄ and the solvent removed in vacuo. CC on silica gel (hexane-EtOAc, 1:1) yielded the desired dihydroxy aldehyde 11 (7.2 mg, 80%) as a foam, plus some starting material **10** (1.2 mg, 13%). IR cm⁻¹: 1710. EI-MS m/z (rel. int.): $374 [M - CH_3OH]^+ (17)$, 346 (28), 328 (66), 300 (100), 286 (36), 268 (48), 241 (70), 183 (67), 159 (38), 145 (43), 129 (36), 105 (41), 91 (51), 55 (35). HRMS (EI) m/z calcd for $[M - CH_3OH]^+$, $C_{21}H_{26}O_6$: 374.1729; found 374.1729.

ent 15α , 20-Dihydroxy-13-methoxymethoxygibberell-16-ene-7, 19-dioic acid 7-methyl ester 19, 20-lactone (12). NaBH₄ (4 mg, 0.10 mmol) was added to a soln of the aldehyde 10 (9 mg, 0.02 mmol) in methanol (5 ml)

at 0°C. After 1 hr, TLC showed that the reaction was complete. The soln was diluted with EtOAc (50 ml) and acidified with NaH₂PO₄ soln (20%, 20 ml). The layers were sepd and the aq. phase was extracted with EtOAc $(2 \times 10 \text{ ml})$. The combined organic phases were washed with brine (2 × 20 ml), dried over Na₂SO₄ and the solvent removed in vacuo. CC on silica gel (hexane-EtOAc, 2:1) yielded lactone 12 (5.7 mg, 67%) as an oil. R_r : 0.28 (hexane–EtOAc, 2:1), IR cm⁻¹: 1723. ¹H NMR (300 MHz, CDCl₃): δ 1.09 (3H, s, H-18), 2.11 (1H, d, J = 12.8 Hz, H-5), 2.81 (1H, d, J =12.8 Hz, H-6), 3.36 (3H, s, OCH₂OCH₃), 3.76 (3H, s, CO_2CH_3), 3.97 (1H, m, H-15), 4.15 (1H, d, $J_{gem} =$ 11.2 Hz, 20-pro-S-H), 4.37 (1H, dd, $J_{gem} = 11.2$ Hz, $J_{20R,1B} = 2.6 \text{ Hz}, 20 - \text{pro} - R - \text{H}, 4.53, 4.74 (2 \times 1\text{H},$ ABd, J = 7.3 Hz, OCH, OCH₃), 5.26 (1H, d, J = 3 Hz, H-17), 5.30 (1H, d, J = 2.7 Hz, H-'17). ¹³C NMR (75 MHz, CDCl₃): δ 15.6 (C-11), 20.6 (C-2), 22.8 (C-18), 37.3, 37.6 (C-3, C-1), 38.7 (C-12), 39.8 (C-14), 41.1 (C-10), 42.6 (C-4), 44.1 (C-6), 51.8 (CO₂CH₃), 52.4 (C-8), 52.8 (C-5), 55.3 (C-9), 55.5 (OCH₂OCH₃), 75.1 (C-20), 77.2 (C-15), 81.9 (C-13), 92.0 (OCH₂OCH₃), 110.0 (C-17), 154.3 (C-16), 174.9, 176.5 (C-7, C-19). EI-MS m/z (rel. int.): 420 [M]⁺ (8), 391 (13), 375 (17), 359 (23), 343 (62), 328 (18), 298 (20), 269 (29), 227 (100), 195 (31), 145 (23), 105 (21), 91 (26), 55 (29). HREI-MS m/z calcd for M^{+} , C₂₃H₃₂O₇: 420.2148; found 420.2150.

ent - 13β , 15α , 20 - Trihydroxygibberell - 16 - ene - 7, 19 dioic acid 7-methyl ester 19,20-lactone (13) (GA₁₀₁ methyl ester). Dowex 50W-X2 resin (80 mg wet resin) was added to a soln of lactone 12 (5.5 mg, 0.013 mmol) in MeOH (3.3 ml) and H₂O (0.66 ml). The reaction mixt, was then heated under reflux for 3 hr, after which time TLC indicated that the reaction was complete. The reaction mixt. was diluted with EtOAc (50 ml) and filtered through a pad of celite. The filtrate was then washed with brine (10 ml), dried over Na₂SO₄ and the solvent was removed in vacuo. CC on silica gel (hexane-EtOAc, 2:1 to 1:2) yielded the desired dihydroxy lactone 13 (3.8 mg, 77%) as an off-white foam. EI-MS m/z (rel. int.) 376 [M]⁺ (20), 344 (83), 316 (23), 298 (49), 260 (35), 241 (32), 183 (100), 159 (55), 145 (42), 105 (42), 91 (51), 79 (32), 55 (43). HREI-MS m/z calcd for [M]⁺, $C_{21}H_{28}O_6$: 376.1886; found 376.1887.

ent - 15α,20,20 - Trihydroxy - 13 - methoxymethoxygib-berell-16-ene-7,19-dioic acid 19,20-lactone (14). The aldehyde 10 (25 mg, 0.055 mmol) was dissolved in MeOH (0.5 ml) and 2 M NaOH soln (3 ml). The reaction mixture was heated at reflux for 6 hr. After cooling the mixture was diluted with EtOAc-20% 2-BuOH (50 ml) and was acidified with H₃PO₄ (10%, 10 ml). The layers were sepd and the aq. phase was extracted with the EtOAc-2-BuOH mixture (2 × 20 ml). The combined organic phases were washed with brine to pH 4. The organic phase was dried over Na₂SO₄, filtered and the solvent removed in vacuo. Purification on silica gel (hexane-EtOAc: acetic acid, 2:1:0.1) provided carboxylic acid 14 (23 mg, 100%) as

a gum. ¹H NMR (300 MHz, CDCl₃): δ 1.20 (3H, s, H-18), 2.15 (1H, d, J = 13.4 Hz, H-5), 3.38 (4H, s, OCH₂OCH₃ and H-6 overlapped), 4.20 (1H, br s, H-15), 4.55, 4.79 (2×1H, ABd, J = 7.3 Hz, OCH₂OCH₃), 5.25 (1H, br s, H-17), 5.29 (1H, br s, H-17), 5.80 (1H, br s, H-20). EI-MS m/z (rel. int.): 404 [M - H₂O]⁺ (25), 376 (12), 359 (28), 331 (28), 314 (38), 285 (50), 257 (59), 239 (61), 213 (62), 149 (43), 91 (58), 71 (65), 57 (100). HREI-MS m/z calcd for [M - H₂O]⁺, $C_{22}H_{28}O_7$: 404.1835; found 404.1834.

Dimethyl ent-15α-hydroxy-13-methoxymethoxygibberell-16-ene-7,19-dioate (15). Anhydrous NH,NH, (0.25 ml) was added to a soln of carboxylic acid 14 (23 mg, 0.055 mmol) in $(CH_2OH)_2$ (2 ml) and the reaction mixture was heated at 100°C for 30 min. Half a pellet of NaOH (approximately 200 mg) was added and the temperature was raised to 116°C for 1 hr. Finally, the temperature was raised to 180° and the reaction left overnight. After cooling the mixt, was diluted with EtOAc-20% 2-BuOH (50 ml) and was acidified with H_3PO_4 (10%, 10 ml). The layers were sepd and the aq. phase was extracted with the EtOAc-2-BuOH mixture $(2 \times 20 \text{ ml})$. The combined organic phases were washed with brine to pH 4. The organic phase was dried over Na2SO4, filtered and the solvent was removed in vacuo. The residue was dissolved in MeOH (10 ml) and treated with an excess of CH₂N₂. The solvent was removed under a gentle stream of N2 and finally, purification on silica gel (hexane-EtOAc, 3:1) yielded **15** (8.5 mg, 35%) as an oil. IR cm⁻¹: 1720. ¹H NMR (300 MHz, CDCl₃): δ 0.69 (3H, s, H-20), 1.04 (3H, s, H-18), 1.78 (1H, d, $J = 12.5 \,\text{Hz}$, H-5), 3.36 $(3H, s, OCH_2OCH_3), 3.39 (1H, d, J = 12.5 Hz, H-6),$ 3.67, 3.75 ($2 \times 3H$, s, CO₂CH₃), 4.02 (1H, m, H-15), 4.56, 4.77 (2 × 1H, ABd, J = 7.3 Hz, OCH, OCH₃), 5.21 (1H, d, J = 3.1 Hz, H-17), 5.31 (1H, d, J =2.5 Hz, H-'17). ¹³C NMR (75 MHz, CDCl₃): δ 15.1 (C-20), 17.3 (C-11), 19.5 (C-2), 28.3 (C-18), 37.5 (C-1), 38.6, 39.0 (C-3, C-12), 40.5 (C-14), 43.4, 44.3 (C-4, C-8), 45.2 (C-6), 50.8 (C-9), 51.4, 52.3 (CO₂CH₃), 52.9 (C-10), 55.4 (OCH₂OCH₃), 59.5 (C-5), 77.1 (C-15), 81.8 (C-13), 91.8 (-OCH,OCH₃), 108.9 (C-17), 153.7 (C-16), 177.2, 178.8 (C-7, C-19). EI-MS m/z (rel. int.): 436 [M]⁺ (8), 404 (49), 376 (34), 359 (100), 342 (52), 299 (52), 271 (45), 255 (38), 227 (33), 197 (31), 149 (39), 91 (37). HREI-MS m/z calcd for [M]⁺, $C_{24}H_{36}O_7$: 436.2461; found 436.2463.

Dimethyl ent-13,15 α -dihydroxygibberell-16-ene-17,19-dioate (**16**) (GA_{100} methyl ester). Dowex 50W-

X2 resin (80 mg of wet resin) was added to a soln of diester **15** (11.5 mg, 0.026 mmol) in MeOH (3.3 ml) and $\rm H_2O$ (0.66 ml). The reaction mixt. was then heated under reflux for 4 hr. The soln was diluted with EtOAc (50 ml) and filtered through a pad of celite. The filtrate was then washed with brine (10 ml), dried over $\rm Na_2SO_4$ and the solvent removed *in vacuo*. CC on silica gel (hexane–EtOAc, 1:1) yielded **16** (7.3 mg, 77%) as a white foam. EI-MS m/z (rel. int.): 392 [M] $^+$ (2), 374 (3), 360 (100), 342 (20), 332 (66), 314 (39), 300 (30), 285 (18), 272 (31), 255 (39), 173 (30), 159 (30), 105 (30), 91 (30), 69 (22), 55 (26). HREI-MS m/z calcd for [M – CH₃OH] $^+$, $\rm C_{21}H_{28}O_5$: 360.1937; found 360.1936.

Acknowledgements—We thank Bruce Twitchin for technical assistance and Abbott Laboratories for the generous provision of gibberellins. IACR receives grant-aided support from the Biotechnology and Biological Sciences Research Council of the United Kingdom.

REFERENCES

- Hutchison, M., Gaskin, P., MacMillan, J. and Phinney, B. O. (1988) Phytochemistry 27, 2697.
- Castellaro, S. J., MacMillan, J., Singh, A. K. and Willis, C. L. (1990) J. Chem. Soc. Perkin Trans. I, 145.
- 3. Dawe, R. D., Mander, L. N. and Turner, J. V. (1985) *Tetrahedron Letters* 26, 363.
- Dawe, R. D., Mander, L. N., Turner, J. V. and Pan, X. F. (1985) *Tetrahedron Letters* 26, 5725.
- Dolan, S. C., Holdup, D. W., Hutchison, M. and MacMillan, J. (1985) J. Chem. Soc. Perkin Trans. I, 651.
- Dolan, S. C. and MacMillan, J. (1985) J. Chem. Soc. Perkin Trans. 1, 2741.
- Dess, D. B. and Martin, J. C. (1983) J. Org. Chem. 48, 4155.
- 8. Mancuso, A. J. and Swern, D. (1981) Synthesis
- 9. Luche, J. L. (1978) J. Am. Chem. Soc. 100, 2226.
- Seto, H. and Mander, L. N. (1992) Syn. Commun. 22, 2823.
- 11. Mander, L. N., Owen, D. J. and Twitchin, B. Aust. J. Chem. (in press).
- MacMillan, J. and Takahashi, N. (1968) Nature 217, 170.
- Mander, L. N. and Owen, D. J. (1996) *Tetrahedron Letters* 37, 723.