

S0031-9422(96)00117-X

SESQUITERPENE LACTONES AND OTHER CONSTITUENTS OF EIRMOCEPHALA MEGAPHYLLA AND CYRTOCYMURA CINCTA

SUSANA BORKOSKY, DIEGO ALVAREZ VALDÉS, ALICIA BARDÓN, JESÚS G. DÍAZ* and WERNER HERZ

Instituto de Química Orgánica, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 491, 4000 S. M. de Tucumán, Argentina; *Department of Chemistry, The Florida State University, Tallahassee, FL 32306-3006, U.S.A.

(Received 8 January 1996)

Key Word Index—*Eirmocephala megaphylla*; *Cyrtocymura cincta*; Compositae; Vernonieae; Vernoniinae; sesquiterpene lactones; glaucolides; piptocarphols; 7-epiloliolide.

Abstract—Aerial parts of *Eirmocephala megaphylla* afforded one known and one new glaucolide, four known piptocarphols, 3,6-dimethoxy-5,3'-4'-trihydroxyflavone, loliolide and 7-epiloliolide. Aerial parts of *Cyrtocymura cincta* furnished two known glaucolides and two known piptocarphols, while the roots contained costunolide and two gudesmanes

In continuation of our study of Vernoniinae of northern Argentina and adjacent regions [1-7] we have examined Eirmocephala megaphylla (Hieron.) H. Robinson (old binomial Vernonia megaphylla [8]) and Cyrtocymura cincta (Griseb.) H. Robinson (V. scorpioides (Lam.) Pers. var. cincta Griseb. [8]). Aerial parts of E. megaphylla gave glaucolide B (1a) [9], the major lactone constituent, and the new analogue 1b. The latter, like other lactones of this type, exhibited only broad signals at room temperature, some of which did not sharpen significantly at 76°. Decoupling in benzene- d_6 (see Experimental) established the structure. Further lactones found in this species were 2a [10], **2b** [6, 7, 11], piptocarphin D (**2c**) [1, 2, 7, 12] and 2d [1, 7]. Other constituents were 3,7-dimethoxy-5,3',4'-trihydroxyflavone, loliolide and the previously unreported 7-epiloliolide (3), which differed from loliolide only in chemical shift and coupling constants of H-7 (see Experimental).

Aerial parts of *C. cincta* contained **1a**, **1c**, previously [13] isolated only from *C. lanuginosa* (Gardn.) H. Robinson (old binomial *V. lanuginosa* Gardn. [8]), **2b** and **2e** [14]. The roots contained costunolide, the eudesmane **4** also found earlier in the roots of *C. lanuginosa* [13], as well as the corresponding alcohol **5** (see Experimental). The similarity between the two *Cyrtocymura* species is noteworthy.

EXPERIMENTAL

General. For sepn of mixts, HPLC with a differential refractometer was used. Columns employed were (A) a Beckman Ultrasphere C8 (5 mm, 10×250 mm) and

(B) a Phenomenex C18 (5 mm, 10×250 mm). Retention times were measured from the solvent peak.

Plant material. Aerial parts of E. megaphylla (Hieron.) H. Robinson were collected at the flowering stage in October 1992 near Buena Vista, Departamento Santa Cruz, Bolivia. A voucher specimen LIL No. 595771 is deposited in the herbarium of the Fundación Miguel Lillo, Tucumán. Aerial parts and roots of C. cincta (Griseb.) H. Robinson were collected at the flowering stage in October 1994 near S. M. de Tucumán, Tucumán province, Argentina. A voucher specimen LIL No. 599841 is deposited in the herbarium of the Fundación Miguel Lillo, Tucumán.

Extraction and fractionation. Finely ground flowers and leaves of E. megaphylla (1100 g) were extracted with EtOAc free of HOAc (2 × 51) at room temp. for 4 days in a shaker. Evapn of the solvent gave 63 g of residue (5.7% yield), which was suspended in 540 ml EtOH at 55°, diluted with H₂O (405 ml) and extracted successively with hexane $(2 \times 300 \text{ ml})$, C_6H_6 $(2 \times$ 300 ml), CH_2Cl_2 (2 × 300 ml) and EtOAc (2 × 200 ml). Evapn of the C₆H₆ extract at red. pres. gave 6.2 g of residue, which was defatted by stirring with MeOH. Filtration and evapn of solvent furnished 5 g of residue, which was chromatographed over silica gel (eluent C₆H₆ and increasing amounts of EtOEt, 0-100%), 15 frs being collected. Frs containing sesquiterpene lactones as indicated by an IR band at 1765 cm⁻¹ were purified further as follows.

Frs 8–10 (combined wt 2.5 g) were taken up in CHCl₃. The insoluble material (60 mg) was identified as 3,7-dimethoxy-5,3',4'-trihydroxyflavone by MS, ¹H NMR and NOE spectrometry. Evapn of the supernatant

1638 S. Borkosky et al.

1a
$$R^{1}$$
, $R^{2} = Ac$
b $R^{1} = H$, $R^{2} = Ac$
c $R^{1} = Ac$, $R^{2} = Ac$ CH₂CH₃

$$O = O = O$$

$$O = O$$

₩OR²

2a
$$R^1$$
; $R^2 = H$, $R^2 = Ac$
b R^1 , $R^2 = Ac$, $R^3 = H$
c $R^1 = Ac$, R^2 , $R^3 = H$
d $R^1 = Et$, $R^2 = Ac$, $R^3 = H$
e $R^1 = Ac$, $R^2 = Prop$, $R^3 = H$

furnished 1.2 g of residue, which was subjected to HPLC (column B, MeOH–H₂O, 4:3, 2 ml min⁻¹) to give four peaks. The material in peak 3 (188 mg, R, 21 min) was **1a**. Since TLC showed that the material in peaks 1, 2 and 4 represented mixts they were combined and reprocessed by HPLC (column A, MeOH–H₂O, 1:1, 2 ml min⁻¹) to give 4.3 mg of a complex mixt. of lactones (R, 12 min), 4.8 mg **2a** (R, 14 min) 7.9 mg of a mixt. of lactones (R, 24 min), 6.6 mg **2b** (R, 27 min), 53 mg **1a** (R, 35 min) and 2.6 mg **2d** (R, 60 min). Known compounds were identified by MS and ¹H NMR spectrometry, which included decoupling.

Fr. 11 (170 mg) of the original chromatogram on HPLC (column B, MeOH- H_2O , 1:1, 2 ml min⁻¹) yielded 3.0 mg **2a** (R_r , 14 min). 1.8 mg of a mixt. containing loliolide (R_r , 16 min), 21 mg **2b** (R_r , 24 min) and 4.9 mg **1a** (R_r , 42 min). Frs 12–15 of the original chromatogram (combined wt 520 mg) on HPLC (column B, MeOH- H_2O , 1:2, 2 ml min⁻¹) gave 6 peaks. Peak 3 (9 mg, R_r , 18 min) was **1b**, peak 4 (11.4 mg, R_r , 26 min) was **2b**, peak 5 (6.5 mg, R_r , 32 min) was **1a** and peak 6 (R_r , 35 min) was a mixt. of lactones. Rechroma-

tography of peaks 1 and 2 (column A, MeOH– H_2O , 1:1, 1.7 ml min⁻¹) gave mixts (3.6 mg, R_r , 15 min and 2.4 mg, R_r , 18 min) and 2.8 mg **2c** (R_r , 21 min).

Evapn of the CH_2Cl_2 extract gave 1.3 g of residue, a portion of which (325 mg) was subjected to HPLC (column B, MeOH-H₂O, 2:3, 3 ml min⁻¹) to give mixts and 6.9 mg **2b** (R, 42 min).

Flowers and leaves of *C. cincta* (600 g) were extracted with CHCl₃ (2 × 41) at rom temp. for 4 days with shaking to give 20.1 g of residue (3.3%), which was suspended in 170 ml EtOH at 55°, diluted with $\rm H_2O$ (130 ml) and extracted successively with hexane (2 × 150 ml), $\rm C_6H_6$ (2 × 150 ml), CHCl₃ (2 × 150 ml) and EtOAc (2 × 150 ml). Evapn of the $\rm C_6H_6$ extract at red. pres. gave 7 g of residue, which was flash chromatographed on silica gel with $\rm C_6H_6$ and increasing amounts of EtOAc (0–50%) and finally MeOH to give 28 frs. Frs containing sesquiterpene lactones (IR band at 1765 cm⁻¹) were further purified as follows.

Fr. 9 (73.1 mg) processed by HPLC (column B, MeOH- H_2O , 3:2, 2 ml min⁻¹) gave 2.5 mg **2b** (R_t 8 min) and 3 mg of unidentified material (R_t 48 min).

Frs. 10 and 11 (combined wt 119 mg) processed by HPLC (column A, MeOH-H₂O, 3:2, 2.2 ml min ⁻¹) gave 84 mg 1c. An 866 mg portion of frs 12-18 (combined wt 1.70 g) was processed by HPLC (column B, MeOH=H $_{2}$ O, 1:1, 2 ml min $^{-1}$) to give 41 mg 1a (R_{c} 14 min) and 196 mg 1c (R_1 29 min). A third peak representing a lactone mixt, was reprocessed by HPLC (column A, MeOH-H₂O, 6:5, 2.5 ml min⁻¹) to give 2.9 mg **2e** (R, 43 min). A 999 mg portion of frs 19-26 (combned wt 1.367 g) was also processed similarly (column B, MeOH-H₂O, 1:1, 2 ml min⁻⁻) to give 1.2 mg **2b** (R, 20 min), 6.1 mg **1a** (R, 29 min), 159 mg **2e** $(R, 38 \,\mathrm{min})$ and 1.5 mg of a lactone mixt. (R,54 min). HPLC of frs 27 and 28 (combined wt 803 mg) in the same manner gave 156 mg 2b (R, 19 min), 59 mg **2e** (R, 33 min), a further 2 mg **2e** (R, 37 min) and 12 mg of a lactone mixt.

Evapn of the CHCl₃ extract gave 1.2 g of residue, which was subjected to HPLC (column B, MeOH– $\rm H_2O$, 1:1, 2 ml min⁻¹) to give 24 mg **2b** (R_t 14 min), 17 mg **2e** and 8.7 mg **1c** (R_t 39 min).

The ground roots of C. cincta (280.5 g) were extracted successively with hexane (2×1.51) , C_6H_6 $(2 \times$ 1.51). Evapn of the C₆H₆ extract at red. pres. gave 723 mg of residue, a portion of which (453 mg) was subjected to HPLC (column B, MeOH-H₂O, 2:1, 2 ml min $^{-1}$) to give 10 mg 4 (R, 12 min) and 3 mg costunolide. Evapn of the CH, Cl, extract gave 689 mg of residue, a portion of which (408 mg) was processed by HPLC (column B, MeOH-H₂O, 3:2, 2 ml min ⁻¹) to give a further 4.5 mg 4 (R_i 21 min) and 1.5 mg 5 contaminated by 4 (R, 22 min), MS PCI (NH₃) of 5 m/z (rel. int.): 256 $[M + NH_4]^+$ (32), 238 (45), 223 (100). ¹H NMR (CDCl₃, 500 MHz): δ 5.03 (d, J =1 Hz, H-13a), 4.91 (br s, H-13b), 3.90 (tt, J = 11.5, 4.5 Hz, axial H-2), 4.14 (br s, 2H, H-12a,b), 0.88 (d. J = 6.5 Hz, 3H, H-15), 0.85 (s, 3H, H-14). Known compounds were identified by MS and H NMR spectrometry, with decoupling.

3-Deacylglaucolide B (1b). Gum; MS PCI (isobutane) m/z (rel. int.): 397 [M + H]⁺ (100, C₁₉H₂₄O₉), 355 (7), 269 (37), IR ν_{max} cm ⁻¹: 3400, 1770, 1730, 1720. H NMR (500 MHz, CDCl₃, 60°): δ 4.84 (br d, $J \simeq ca 9 \text{ Hz}, \text{ H-8}, 4.82 (br, \text{ H-6}), 4.47 (br. 2H,$ H-13a,b), 2.75 (dd, J = 16, 7 Hz, H-9a). 2.73 (br, 2H), 2.68 (dd, J = 15, 4.5 Hz), 2.50 (br), 2.40–2.35 (br, 2-3H), 2.09, 2.08 (each s, 3H, Ac), 1.64 (s, 3H, H-14) 1.59 (br s, 3H, H-15) 1.57 (m, H-9b); (C_6D_6 , 76°): δ 4.77 (dd, J = 8, 1.5 Hz, H-8), 4.69 (br d, J = 10 Hz, H-6), 4.21 (br d, J = 15 Hz, H-13a), 4.19 (br d, J =15 Hz, H-13b), 2.40 (dd, J = 16, 8 Hz, H-9a), 2.34 (brddd, J = 17, 11.5, 5, 1 Hz, H-2a) 2.19 (br d, J = 10 Hz, H-5), 2.25 br t (7), 2.15 m, 1.95 m, 1.88 (m, 2H, H-2b, 3a), 1.60, 1.54 (each s, 3H, Ac), 1.47, 1.44 (each s, 3H, H-14, H-15), 1.28 (*m*, H-3b).

7-Epiloliolide (3). Gum; MS PCI (isobutane) m/z (rel. int.): 197 [M + H]⁻ (100, C₁₁H₁₆O₃). ¹H NMR (CDCl₃, 500 MHz): δ 5.71s (H-3), 4.13 (t, J = 11.5, 4 Hz, H-7), 2.53 (ddd, J = 12, 4, 2 Hz), 2.04 (ddd, J = 13, 4, 2 Hz), 1.58, 1.31, 1.26 (each s, 3H); ¹H NMR (C₆D₆): δ 5.32 (s, H-3), 3.35 (tt, J = 11.5, 4 Hz), 2.02 (ddd, J = 12, 4, 2 Hz), 1.40 (ddd, J = 13, 4, 2 Hz), 1.07 (t, J = 12 Hz), 0.74 (dd, J = 13, 12 Hz), 1.04, 0.69, 0.60 (each s and 3H).

Acknowledgement—Work in Tucumán was supported by grants from the Consejo de Investigaciones de la Universidad Nacional de Tucumán.

REFERENCES

- Catalán, C. A. N., Iglesias, D. I. A., Kavka, J., Sosa, V. E. and Herz, W. (1986) J. Nat. Prod. 49, 351
- Catalán, C. A. N., Iglesias, D. I. A., Kavka, J., Sosa, V. E. and Herz, W. (1988) Phytochemistry 27, 197.
- 3. Bardón, A., Catalán, C. A. N., Gutierrez, A. B. and Herz, W. (1988) *Phytochemistry* 27, 2691.
- 4. Bardón, A., Catalán, C. A. N., Gutiérrez, A. B. and Herz, W. (1988) *Phytochemistry* 27, 2989.
- 5. Bardón, A., Catalán, C. A. N., Gutiérrez, A. B. and Herz, W. (1990) *Phytochemistry* **29**, 313.
- 6. Bardón, A., Kamiya, N. I., de Ponce de Leon, C., Catalán, C. A. N., Díaz, J. G. and Herz, W. (1992) *Phytochemistry* **31**, 609.
- Bardón, A., Montanaro, S., Catalán, C. A. N., Díaz, J. G. and Herz, W. (1993) *Phytochemistry* 34, 253.
- Robinson, H. (1987) Proc. Biol. Soc. Wash. 100, 844.
- 9. Padolina, W. G., Yoshioka, H., Nakatani, N., Mabry, T. J., Monti, S. A., Davis, R. E., Cox, P. J., Sim, G. A., Watson, W. H. and Wu, I. B. (1974) *Tetrahedron* 30, 1161.
- Jakupovic, J., Schmeda-Hirschmann, G., Schuster, A., Zdero, C., Bohlmann, F., King, R. M., Robinson, H. and Pickardt, J. (1986) *Phytochemistry* 28, 145.
- Rustaiyan, A. and Nazarans, A. (1979) Fitoterapia 50, 243.
- Cowall, P., Cassady, J. M., Chang, C.-J. and Kozlowski, J. F. (1981) J. Org. Chem. 46, 1108.
- Bohlmann, F., Jakupovic, J., Gupta, R. K., King, R. M. and Robinson, H. (1981) *Phytochemistry* 20, 473.
- 14. Bohlmann, F., Mahanta, R. K. and Dutta, L. N. (1979) *Phytochemistry* **18**, 289.