PII: S0031-9422(96)00188-4

HOOKERIANIN: A FLAVONE FROM TEPHROSIA HOOKERIANA

PALANISAMY PRABHAKAR, ARUMUGASAMY VANANGAMUDI, RATHINASAMY GANDHIDASAN and PATHAI VENKATESWARA RAMAN*

Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai-625 021, India

(Received 12 February 1996)

Key Word Index—*Tephrosia hookeriana*; Leguminosae; roots; flavones; hookerianin; semiglabrin; lanceolatin A.

Abstract—The chemical investigation of *Tephrosia hookeriana* root resulted in the isolation of the new flavone hookerianin characterized as 5,7-dimethoxy-8-[3"-(2",5"-dihydro-5",5"-dimethyl-2"-oxofuryl)]-flavone along with (−)semiglabrin and lanceolatin A. Copyright © 1996 Elsevier Science Ltd

INTRODUCTION

Most *Tephrosia* species possess insecticidal, fish-poisoning and medicinal properties [1, 2]. Flavonoids, isoflavonoids and rotenoids have been identified as major secondary constituents in these plants [3, 4]. In the present work, an analysis of the hitherto phytochemically uninvestigated roots of *T. hookeriana* Wight & Arn. yielded a new flavone hookerianin, 5,7-dimethoxy-8-[3"-(2",5"-dihydro-5",5"-dimethyl-2"-oxofuryl)] - flavone (1) along with (-)semiglabrin [5] and lanceolatin A [6].

RESULTS AND DISCUSSION

Hookerianin (1) gave a negative ferric chloride test, but the positive shinoda test and UV absorption maxima at 265 and 317 nm suggested it was a flavone. The IR spectrum showed chromone carbonyl absorption at $1630~{\rm cm}^{-1}$ and another carbonyl absorption at $1735~{\rm cm}^{-1}$. The $^{13}{\rm C}$ NMR spectrum also showed two carbonyl carbon absorptions; one at $177.4~\delta$ due to a chromone carbonyl carbon and another at $171.1~\delta$.

The ¹H NMR spectrum of 1 revealed the presence of an unsubstituted phenyl ring $(7.39-7.70 \delta, m, 5H)$ and two methoxy groups $(3.91, 3.99 \delta)$. The C-3 proton appeared as a singlet at 6.60δ . The spectrum further revealed two more singlets at 6.43 and 7.48δ , each integrating for one proton and a *gem*-dimethyl group (1.63δ) . The presence of an additional carbonyl group together with a *gem*-dimethyl group and a one proton singlet at 7.40δ suggested the presence of an additional ring system as the third substituent. The ¹H NMR values of *gem*-dimethyl (1.63δ) , one proton singlet (7.40δ) and the carbonyl absorption in IR (1735 cm^{-1}) and ¹³C NMR (171.1δ) are in agreement with the ring system 2'', 5''-dihydro-5'', 5''-dimethyl-2''-oxo-3''-furyl-

R = OMe
 R = H

as in apollinine (2); in which these values appeared at 1.67δ , 7.35δ , 1740 cm^{-1} and 170.5δ , respectively [5]. This additional ring system was placed at the C-8 position by comparison with other flavonoids present in this species, and the two methoxy groups at the C-5 and C-7 positions. Therefore, the singlet at 6.43δ was assigned to the C-6 proton. Thus the structure of hookerianin was established as 5.7-dimethoxy-8-[3"-(2",5"-dihydro-5",5"-dimethyl-2"-oxo-furyl)]-flavone. The 13 C NMR broad band, off-resonance and SEFT spectra, and also the mass spectrum, were all in accordance with the structure proposed for hookerianin.

EXPERIMENTAL

The plant material was collected from the Ayyalur Hills in Tamil Nadu (India) and identified at the Botanical Survey of India, Coimbatore. A voucher specimen has been deposited at the herbarium of the Plant Science Department of Madurai Kamaraj University. Mps are uncorr.

Extraction and isolation. Air-dried pieces of roots

^{*}Author to whom correspondence should be addressed.

316 Short Reports

(1 kg) were extracted successively with hot petrol and CHCl₃. The CHCl₃ extract was evapd to dryness and a part of the residue (5 g) was subjected to CC over silica gel (60–120 mesh). C_6H_6 –EtOAc (95:5) yielded (–)semiglabrin, C_6H_6 –EtOAc (85:15) yielded lanceolatin A, and C_6H_6 –EtOAc (3:2) yielded hookerianin.

Hookerianin (1). Crystals from CHCl₃–MeOH mixt. (83 mg), mp 238–40°, UV $\lambda_{\rm max}^{\rm MeOH}$ nm: 265, 317. IR $\nu_{\rm max}^{\rm Nujol}$ cm⁻¹: 1735, 1630, 1582, 1200. ¹H NMR (400 MHz, CDCl₃): δ 1.63 (6H, s, gem-Me), 3.91, 3.99 (6H, 2s, MeO – 5, 7), 6.43 (1H, s, H-6), 6.60 (1H, s, H-3), 7.48 (1H, s, H-4"), 7.39–7.47 (3H, m, H-2',4',6'), 7.68–7.70 (2H, m, H-3',5'). ¹³C NMR (400 MHz, CDCl₃): δ 25.89 (gem-Me), 56.33, 56.56 (MeO-5,7), 84.75 (C-5"), 91.94 (C-6), 100.29 (C-8), 108.84 (C-3), 109.03 (C-10), 124.39 (C-3"), 126.01 (C-2',6'), 128.90 (C-3',5'), 131.28 (C-4'), 131.63 (C-1'), 156.63 (C-9), 159.56 (C-4"), 160.70 (C-2), 161.87 (C-7), 161.97 (C-5), 171.12 (C-2"), 177.39 (C-4).

Acknowledgements—Two of the authors (P. P.) and (A. V.) are grateful to U.G.C., New Delhi, for the award of a Teacher Research Fellowship (former) and Madurai

Kamaraj University for the award of University Stipend (latter).

REFERENCES

- Chopra, R. N., Chopra, I. C. and Nayar, S. L. (1956) Glossary of Indian Medicinal Plants, CSIR, New Delhi.
- Ambasta, S. P. (1986) The Useful Plants of India, CSIR, New Delhi.
- Wollenweber, E. (1982) in *The Flavonoids: Advances in Research* 2nd Edn (Harborne, J. B. and Mabry, T. J., eds), p. 189. Chapman and Hall, London.
- Dewick, P. M. (1982) in *The Flavonoids: Advances in Research*, 2nd Edn (Harborne, J. B. and Mabry, T. J., eds), p. 535. Chapman and Hall, London.
- Pelter, A., Ward, R. S., Venkata Rao, E. and Ranga Raju, N. (1981) J. Chem. Soc., Perkin Trans. I, 2491.
- Waterman, P. G. and Khalid, S. A. (1980) Phytochemistry 19, 909.