

PII: S0031-9422(96)00375-5

TAXANES FROM TAXUS MAIREI

SHUNG-JIM YANG, JIM-MIN FANG and YU-SHIA CHENG*

Department of Chemistry, National Taiwan University, Taipei, Taiwan 106, Republic of China

(Received in revised form 29 April 1996)

Key Word Index—Taxus maire; Taxaceae; taxane; twigs; diterpenoids.

Abstract—Four new taxane diterpenes, 9α -hydroxy- 14β -(2-methylbutyryl)oxy- 2α , 5α , 10β -triacetoxytaxa-4(20), 11-diene, $2\alpha,5\alpha,9\alpha,10\beta,14\beta$ -pentaacetoxytaxa-4(20),11-diene, 5α -(cinnamoyl)oxy- 7β -hydroxy- $9\alpha,10\beta$ - 13α -triacetoxytaxa-4(20),11-diene and 5α -hydroxy- 9α ,10 β ,13 α -triacetoxytaxa-4(20),11-diene, along with 12 known taxa-4(20),11-dienes, have been isolated from twigs of Taxus mairei and their structures determined by spectral methods. Copyright © 1996 Elsevier Science Ltd

INTRODUCTION

The chemical constituents of the plants of the Taxus genus have been extensively investigated [1-3], partly due to the finding of an antitumour agent, taxol [4]. Taxus mairei is the only species belonging to the genus Taxus found in Taiwan. A few taxane derivatives have been isolated from the heartwood of this plant [5, 6]. We report herein 16 taxane diterpenes having C4(20)exocyclic double bonds isolated from the twigs of T. mairei.

RESULTS AND DISCUSSION

A concentrated acetone extract of the twigs of T. mairei was diluted with water and extracted with ethyl acetate. The ethyl acetate soluble material was chromatographed to give 16 taxanes (1-16), 12 of which were known: $2\alpha, 5\alpha, 10\beta, 14\beta$ - tetraacetoxytaxa-4(20), 11-diene (1) [7], 14β -(isobutyryl)oxy- 2α , 5α , 10β -triacetoxytaxa-4(20),11-diene (2) [7], 14β -(2-methylbutyryl) $0x0-2\alpha,5\alpha,10\beta$ -triacetoxytaxa-4(20),11-diene (3) [7], yunnanxane (4) [8], taxuyunnanine B (7) [9], 5α - (cinnamoyl)oxy - 9α , 10β , 13α - triacetoxytaxa -4(20), 11-diene (8) [10, 11], 2α -deacetoxytaxinine J (10) [12], taxinine J (11) [6], taxacin (12) [13], taxusin (13) [14, 15], $5\alpha,7\beta,9\alpha,10\beta,13\alpha$ -pentaacetoxytaxa-4(20),11-diene **(15)** [16] and 5α - hydroxy - $2\alpha,7\beta,9\alpha,10\beta,13\alpha$ - pentaacetoxytaxa - 4(20),11 - diene (16) [17]. Compounds 1-3 have been found in cell cultures of T. chinensis var. mairei [7].

Compound 5 gave rise to a molecular ion [M] at m/z 562.312 consistent with a molecular formula

C₃₁H₄₆O₉. The ¹H NMR spectrum (Table 1) showed

resonances of four methyl groups at δ 0.87 (s), 1.12 (s),

Compound 6 was assigned the molecular formula $C_{30}H_{42}O_{10}$ ([M]⁺ = m/z 562.276). The ¹H and 13C NMR spectra (Tables 1 and 2) were similar to those of compound 7 except that the signals of the methylbutyrate group in 7 were replaced with the signals of an acetyl group in 6. The structure of 6 was assigned as $2\alpha, 5\alpha, 9\alpha, 10\beta, 14\beta$ -pentaacetoxytaxa-4(20), 11-diene. From the ¹H-¹H COSY spectrum the reso-

^{1.58 (}s) and 2.12 (s), which are characteristic of taxane diterpenes. In addition to the resonances for three acetyl groups at δ 169.8 (s), 169.9 (s), 170.5 (s), 21.3 (q), 21.3 (q) and 21.9 (q), the 13 C NMR spectrum (Table 2) displayed a signal at δ 175.6 (s) attributable to an ester group. The α -methylbutyrate moiety was indicated by the proton resonances at δ 0.85 (t, $J = 7.2 \,\mathrm{Hz}$, CH₃), 1.11 (d, J = 7.2 Hz, CH₃), 1.46 (m, CH₂) and 2.34 (m, CH). The proton resonances at δ 4.84 (br s) and 5.28 (br s) as well as the carbon signals at δ 141.8 (s) and 117.5 (t) suggested the presence of a methylene group. The structure of 5 was assigned as 9α -hydroxy- 14β -(2methylbutyryl)oxy - 2α , 5α , 10β - triacetoxytaxa - 4(20), 11-diene. The methylbutyrate group was located at C-14 by ¹H-¹H COSY, HMBC, and HMQC. The corresponding H-14 signal occurred at δ 4.93 (dd, J =4.4 and 8.8 Hz). The absolute configuration of the side chain was tentatively assigned to have the (S)-configuration based on the literature [7, 8]. The 2β -, 5β - and 10α -protons geminal to the acetoxy groups had chemical shifts [δ 5.23 (dd, J = 2.6 and 6.4 Hz), 5.29 (1H, br s) and 5.80 (d, J = 10 Hz)] close to those values in taxuyunnanine B. Compound 5 had a hydroxyl group at C-9 as its H-9 β signal occurred at δ 4.19 (d, J = 10 Hz) whereas the H-9 β signal in taxuyunnanine B occurred at δ 5.77. The ¹H NMR spectrum also exhibited a characteristic signal of H-3 α at δ 2.92 (1H, d, J=6 Hz).

^{*}Author to whom correspondence should be addressed.

Table 1	'H NME	Spectral data	for taxanes 5	6	9 and	14	(CDCI	١

Н	5	6	9†	14
1	1.82 (d, 2.4)*	190 (d, 2.4)		1.76 (m)
2	5.32 (dd,	5.38 (dd,		
	2.4, 6.4)	2.4, 6.3)		
3	2.92(d, 6.4)	2.93(d, 6.3)	2.93 (d, 3.9)	3.26(d, 4.5)
5	5.29 (br, s)	5.24 (br, s)	5.55 (br s)	4.26 (br s)
7			4.32 (dd,	
			4.8, 11.1)	
9	4.19 (d, 10.0)	5.76 (d, 10.2)	6.05 (d, 11.1)	5.73 (d, 10.2)
10	5.80 (d, 10.0)	6.03 (d, 10.2)	6.25 d, 11.1)	6.07 (d, 10.2)
13	2.87 (dd,	2.83 (dd,	5.77 (br t,	5.67 (dd,
	9.2, 19.2)	9.0, 19.2)	7.8)	3.3, 7.8)
	2.32(m)	2.40(m)		
14	4.93 (dd,	4.93 dd,		1.12 (<i>dd</i> ,
	4.4, 8.8)	4.8, 9.0)		4.5, 15.3)
				2.78(m)
16	1.58(s)	1.68 (s)	1.73(s)	1.55 (s)
17	1.12(s)	1.09(s)	1.01(s)	0.97(s)
18	2.12(s)	2.15(s)	2.22(s)	2.08(s)
19	0.87(s)	0.82(s)	0.81(s)	0.68(s)
20	4.84 (br s)	4.84 (br s)	4.97 (br s)	4.71 (br s)
	5.28 (br s)	5.30 (br s)	5.35 (br s)	5.09 (br s)
2'	2.34(m)			
3'	1.46(m)			
4′	0.85(t, 7.2)			
5'	1.11(d, 7.2)			

^{*}The values in parentheses are coupling constants (Hz).

Table 2. ¹³C NMR spectral data for taxanes 5, 6, 9 and 14 (CDCl₃, δ in ppm)

C	5	6	9*	14
1	59.0	58.4	40.0	39.5
2	70.0	70.2	69.9	32.3
3	44.1	44.2	37.3	36.1
4	141.8	141.3	146.2	153.3
5	78.6	78.3	78.2	77.4
6	28.5	28.3	34.5	26.4
7	25.8	27.2	70.5	29.0
8	44.8	44.8	46.2	43.4
9	76.2	76.7	76.5	74.3
10	76.0	72.4	71.6	72.8
11	133.2	132.7	134.9	136.1
12	137.0	137.2	137.1	137.2
13	39.7	39.4	70.0	70.2
14	69.9	69.8	31.8	26.0
15	36.8	36.9	39.3	38.7
16	26.2	25.8	27.1	27.4
17	31.5	31.6	31.0	32.3
18	21.0	21.0	13.1	15.8
19	22.4	17.3	15.2	17.1
20	117.5	118.3	115.9	111.1
1'	175.6			
2'	41.0			
3′	26.7			
4′	11.5			
5′	13.9			

^{*}Cinnamoyl data: δ 166.0, 118.3, 145.6, 134.0, 128.0, 128.9 and 130.5.

nance at δ 4.93 (*dd*, J = 4.8 and 9.0 Hz) was assigned to H-14 α . No coupling was observed between H-1 β and H-14 α , because these two protons were nearly orthogonal.

Compound 9 (C₃₅H₄₄O₉) gave rise to a molecular ion $[M]^+$ at m/z 608.293 (calc. 608.297). The IR spectrum showed absorptions at 1730, 1715 and 1630 cm⁻¹ attributable to normal and conjugated ester groups. In the 'H NMR spectrum, three acetoxy groups appeared at δ 1.82 (s), 2.00 (s) and 2.06 (s). The resonances at δ 7.74, 6.52 (AB quartet, J = 16 Hz) and 7.37-7.48 (5H) indicated the presence of a cinnamoyl group. By comparison of the ¹H and ¹³C NMR spectra of 9 with those of 8 and 2α -deacetoxytaxinine J, the structure of 9 was assigned as 5α -(cinnamoyl)oxy- 7β hydroxy - 9α , 10β , 13α - triacetoxytaxa - 4(20), 11 - diene. The chemical shifts of the 5β -, 9β - and 10α -protons $[\delta 5.55 \ (br \ s), \ 6.05 \ (d, \ J = 11.1 \ Hz) \ and \ 6.25 \ (d, \ J = 11.1 \ Hz)$ 11.1 Hz)] were close to the values in 8 and 10. Because the dihedral angle between H-10 α and H-9 β was nearly 180°, these protons exhibited a large coupling constant (11.1 Hz). The H-7 α in 9 was geminal to a hydroxyl group and resonated at δ 4.32 (dd, J = 4.8and 11.1 Hz), whereas the H-7 α in 10 geminal to an acetoxy group appeared at a lower field (δ 5.70).

Compound **14** ($\mathrm{C_{26}H_{38}O_7}$), [M]⁺ at m/z 462.260, gave ¹H an d¹³C NMR spectra similar to those of **13** ($\mathrm{C_{24}H_{36}O_8}$). Compound **14** had three acetoxy groups as shown by the signals at δ_{H} 2.02 (s), 2.05 (s) and 2.07

[†]Cinnamoyl data: δ 7.74 (d, 16.0), 6.52 (d, 16.0) and 7.37–7.48 (5H).

(s), whereas compound 13 had four acetoxy groups. The structure of 14 was assigned as 5α -hydroxy- 9α , 10β , 13α -triacetoxytaxa-4(20),11-diene. The proton resonances at δ 5.09 (1H, br s) and 4.71 (1H, br s) were attributable to the methylene group at C-4. The 9β - and 10α -protons appeared as an AB system at δ 5.73 and 6.07 with a large coupling constant (10.2 Hz). From the 1 H- 1 H COSY spectrum, H- 5β and δ 4.26 geminal to a hydroxyl group was correlated with H- 6α (at δ 1.75), h- 6β (at δ 1.65) and H-20 (at δ 5.09). The signal at δ 5.67 (H- 13β) showed correlations with H- 14α (δ 1.12), H- 14β (δ 2.78) and H-18 (δ 2.08).

In summary, the twigs of *T. mairei* contain various taxane diterpenes. Isolation of taxanes 1–7 is significant since taxanes having substituents at C-14 are rare.

EXPERIMENTAL

General. Mp: uncorr; 1 H NMR: 300 MHz; 13 C NMR 75 MHz; HPLC: Hibar Lichrosorb Si 60 column (10 μ m or 7 μ m, 25 cm \times 1 cm i.d.).

Plant material. Twigs (1.2 kg) of T. mairei, collected in the remote mountains at an elevation of ca 2100 m (Tong-Shi, Taichung county), were exhaustively extracted with Me₂CO (71×3) . The Me₂CO extract was concd to give 100 g of residue, which was diluted with H₂O and extracted $(\times3)$ with EtOAc. The combined EtOAc extracts were concd to give an oil (75 g), which was absorbed with 110 g silica gel and then subjected to CC on a column packed with 650 g silica gel. Elution was with gradients of hexane, EtOAc and Me₂CO. The portion obtained from elution with EtOAc-hexane (30-

- 1 OAc
- 2 OCOCHMe2
- 3 OCOCHMeCH₂Me
- 4 OCOCHMeCH(OH)Me

 R^1 R^2

5 OH OCOCHMeCH₂Me

6 OAc OAc

7 OAc OCOCHMeCH₂Me

	R^1	R ²	R ³
13	Н	Н	OAc
14	H	н	ОН
15	Н	OAc	OAc
16	OAc	OAc	ОН

60%) was further subjected to flash chromatography and HPLC with elution with EtOAc- CH_2Cl_2 (20–40%) or Me_2CO -hexane (30–50%) to give **2** (12 mg), **3** (80 mg), **1** (75 mg), **7** (28 mg), **13** (21 mg), **6** (55 mg), **10** (90 mg), **11** (10 mg), **15** (79 mg), **4** (22 mg), **5** (15 mg), **14** (11 mg), **8** (15 mg), **9** (30 mg), **12** (13 mg) and **16** (12 mg) in ascending order of polarity.

9α-Hydroxy-14β-(2-methylbutyryl)oxy-2α,5α,10β-triacetoxytaxa-4(20),11-diene (5). Amorphous solid, $[\alpha]_D^{23}$ +65.8° (CHCl₃; c 0.55). FABMS (NBA) m/z (rel. int.): 585 [M + Na] + (15), 503 (4), 461 (10), 443 (6), 401 (6), 341 (16), 281 (30), 57 (100). IR $\nu_{\rm max}^{\rm KBF}$ cm⁻¹: 3456, 1725, 1620.

 $2\alpha, 5\alpha, 9\alpha, 10\beta, 14\beta$ - Pentaacetoxytaxa - 4(20),11 - diene (6). Needles, mp 132-133°, $[\alpha]_D^{25} + 26^\circ$ (CHCL₃; c 2.4). FABMS (NBA) m/z (rel. int.): 562 [M]⁺ (3), 503 (5), 443 (14), 383 (9), 323 (12), 263 (40), 135 (100). IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹. 2929, 1730, 1234, 1021.

 5α - (Cinnamoyl)oxy - 7β - hydroxy - 9α,10β,13α - triacetoxytaxa - 4(20),11 - diene (9). Yellow gum. [α]₀²⁵ +20° (CHCl₃; c 0.5). FABMS (NBA) m/z (rel. int.): 608 [M]⁺ (20), 590 (13), 548 (100), 488 (30), 428 (16). IR ν _{max} cm⁻¹: 3469, 1730, 1631, 1234, 1159, 1021

 5α - Hydroxy - 9α,10β,13α - triacetoxytaxa - 4(20),11 - diene (14). Needles, mp 204–206°, $[\alpha]_{\rm D}^{26}$ +266° (CHCl₃; c 0.9). FABMS (NBA) m/z (rel. int.): 462 [M] + (6), 444 (20), 403 (70), 343 (63), 283 (100), 265 (58). IR $\nu_{\rm max}^{\rm KBr}$ cm⁻¹: 3485, 1734, 1235, 1019, 898.

REFERENCES

- 1. Appendino, G. (1995) Nat. Prod. Rep. 349.
- Kingston, D. G. I., Molinero, A. A. and Rimoldi, J. M. (1993) Progress in the Chemistry of Organic

- Natural Products, Vol. 61 (Herz, W., Kirby, G. W., Moore, R. E., Steglich, W. and Tamm, Ch., eds), p. 1. Springer, New York.
- 3. Chen, W.-M. (1990) Acta Pharm. Sin. 25, 227.
- Wani, M. C., Taylor, H. L., Wall, M. E., Coggon, P. and McPhail, A. T. (1971) J. Am. Chem. Soc. 93, 2325.
- Yeh, M.-K., Wang, J.-S. and Chen, F.-C. (1988) J. Chin. Chem. Soc. 35, 309.
- Min, Z.-D., Jiang, H. and Liang, J. Y. (1989) Acta Pharm. Sin. 24, 673.
- Ma, W., Stahlhut, R. W., Adams, T. L., Park, G. L., Evans, W. A. Blumenthal, S. G., Gomez, G. A., Nieder, M. H. and Hylands, P. J. (1994) *J. Nat. Prod.* 57, 1320.
- Chen, W.-M., Zhang, P.-L., Wu, B. and Zheng, Q.-T. (1991) Acta Pharm. Sin. 26, 747.
- Zhang, H., Takeda, Y., Minami, Y., Yoshida, K., Matsumoto, T., Xiang, W., Mu, O. and Sun, H. (1994) Chem. Letters 957.
- Yeh, M.-K., Wang, J.-S. and Chen, F.-C. (1988) *Phytochemistry* 27, 1534.
- Zhang, Z. and Jia, Z. (1991) Phytochemistry 30, 2345.
- Liang, J.-Y., Min, Z.-D. and Niwa, M. (1988) Acta. Chem. Sin. 46, 1053.
- Yoshizaki, F., Fukuda, M., Ishida, T. and In, Y. (1988) Chem. Pharm. Bull. 36, 2098.
- Erdtmam, H. and Tsuno, K. (1969) *Phytochemistry* 8, 931.
- Ho, T.-I., Lee, G.-H., Peng, S.-M., Yeh, M.-K., Chen, F.-C. and Yang, W.-L. (1987) Acta Cryst. C43, 1378.
- Della Casa De Marcano, D. P. and Halsall, T. G. (1969) J. Chem. Soc., Chem. Commun. 1282.
- 17. Kingston, D. G. I., Hawkins, D. R. and Ovington, L. (1982) *J. Nat. Prod.* **45**, 466.