PII: S0031-9422(96)00176-8

COUMARINS FROM PEUCEDANUM OSTRUTHIUM

ALOIS HIERMANN, DOMINIK SCHANTL, MANFRED SCHUBERT-ZSILAVECZ* and JOSEF REINERT

Institut für Pharmakognosie der Universität Graz, Universitätsplatz 4, A-8010 Graz, Austria; *Institut für Pharmazeutische Chemie der Universität Graz, Universitätsplatz 1, A-8010 Graz, Austria; †Abteilung für Zentrale Analytik der Universität Bayreuth, Universitätsstraße 30, D-95440 Bayreuth, Germany

(Received in revised form 24 January 1996)

Key Word Index—*Peucedanum ostruthium*; roots; coumarins; 6-(3-carboxybut-2-enyl)-7-hydroxycoumarin; 3'-acetate of oxypeucedanin hydrate.

Abstract—Two new coumarins, 6-(3-carboxybut-2-enyl)-7-hydroxycoumarin and the 3'-acetate of oxypeucedanin hydrate, were isolated from the roots of *Peucedanum ostruthium*, and their structures were established mainly by mass spectrometry and 2D NMR techniques. Copyright © 1996 Elsevier Science Ltd

INTRODUCTION

Peucedanum ostruthium (L.) Koch has been used since ancient times in folk medicine against various diseases. Based on a screening programme of medicinal plants for their possible antiphlogistic activity, we have observed that aqueous extracts of roots of *P. ostruthium* significantly inhibited at a dose of 0.03 mg kg⁻¹ p.o.

the carrageenan induced raw paw oedema. A corresponding phytochemical study resulted in the isolation of two new coumarins, 6-(3-carboxybut-2-enyl)-7-hydroxycoumarin (1) as active principle and the 3'-acetate of oxypeucedanin hydrate (2), along with known coumarins [1-3]. Hitherto, the type of prenylated coumarin (1), containing a free carboxyl group, has only been reported in *Evodia vitiflora* [4].

Scheme 1. EI mass spectral fragmentation pattern of compound 1.

A. Hiermann et al.

RESULTS AND DISCUSSION

In order to clarify the structures of 1 and 2, mass spectrometric examinations were carried out first. The mass spectrum of 1 showed a molecular ion of m/z 260 as well as fragments at m/z 242, 187, 199 and 171 from which we can derive the fragmentation pattern shown in Scheme 1. Compound 1 was reacted with diazomethane and the resulting methylated derivative was identified by means of GC-mass spectral analysis as a dimethyl derivative. The mass spectrum of 2 (showed ions at m/z (rel. int.) 346 [M]⁺ (27), 202 (100), 174 (24), 146 (27) and 145 (24); the ion of m/z 202 appeared as the base peak and corresponded to a psoralen hydroxylated at positions C-5. This ion is formed by splitting off the acylated side chain as a neutral molecule and can be interpreted as a McLafferty rearrangement where a hydrogen atom on the side chain is transferred to the ether oxygen atom.

The structures of 1 and 2 derived by the mass spectra are in accordance with the results of the ¹H NMR

investigations. By means of the 'H-'H COSY spectra, it was possible to characterize the spin systems of 1 and 2 and to assign all proton resonances. The lactone-ring protons of 1 and 2 each form an AX-two-spin system, the coupling constants of which reflect *cis*-arrangements of the double bond protons. Due to the longrange coupling via five bonds of H-4 with H-8, the signal of the H-4 proton appears as a doublet-doublet signal. The two furan-ring protons of 2 also form a two-spin system whose small coupling constant is typical of furan rings. H-a shows also a long-range coupling via five bonds to the H-8 proton resulting in a doublet-doublet signal for the H-a proton. An analogous multiplicity results for the H-8 proton (Table 1).

The position of the acetyl residue in the prenyl side chain of **2** was deduced from the chemical shifts of the protons of the prenyl residue. The proton on the C'-2 carbon atom was shifted to low field in the synthetically accessible 2'-O-acetyl and diacetyl derivative of the oxypeucedanin (δ 5.36 and 5.33) [5], but this could be observed with the 3'-O-acetyl derivative **2**. The

Table 1. ¹H NMR spectral data for compounds 1 and 2 (500 MHz in MeOH-d.)

Proton	$\frac{\delta}{(^{1}\mathrm{H})}$	δ ('H)*	Couplings† (Hz)
H-3	6.09 d		$^{3}J_{\text{H-3,H-4}} = 9.5$
H-4	7.79 d		$^{3}J_{\text{H-4,H-3}} = 9.5$
H-5	7.31 d		
H-8	6.67 s		
H_2-1'	3.44 d		$^{3}J_{\text{H-1',H-2'}} = 7.5$
H-2'	6.59 m		${}^{3}J_{\text{H-1',H-2'}} = 7.5$ ${}^{3}J_{\text{H-2',H-1'}} = 7.5$
CH ₃	1.90 s		
2	2		
H-3	6.26 d	6.25	$^{3}J_{\text{H-3,H-4}} = 9.8$
H-4	8.37 dd	8.39	$^{5}J_{\text{H-4,H-8}} = 0.7$
H-8	7.18 dd	7.15	$^{5}J_{\text{H-8,H-a}} = 1.0$
H-a	7.12 dd	7.13	$^{3}J_{\text{H-a.H-b}} = 2.4$
H-b	7.72 d	7.71	$^{3}J_{\text{H-b.H-a}} = 2.4$
H-1'	4.85 dd	4.70	$^{2}J_{\text{H-1'(gem.)}} = 9.9$
	4.45 dd	4.36	$J_{\text{H-1',H-2}} = 2.6, 7$
H-2'	4.00 dd	3.88	$^{3}J_{\text{H-2',H-1'}}=2.6,7$
Me	1.66 s	1.26	
	1.61 s	1.21	
	2.03		

^{*}H-NMR data oxypeucedanin hydrate.

 $[\]dagger \Delta J_{\rm H,H} = 0.1 \text{ Hz}.$

acetoxy residue in position C-3', however, caused a clear low field shift of the signals of the terminal methyl groups.

EXPERIMENTAL

General. NMR: Bruker AMX-500 (¹H frequency: 500.13 MHz), 5-mm reverse probe head, solvent: MeOH- d_4 , temp. 303 K. The MeOH signal was used as int. standard (¹H: δ 3.3). 90° pulse: ¹H: 9.8 μsec. COSY: 45° mixing pulse. MS: Finigan MAT 8500, EI, 70 eVf. GC-MS: Finigan MAT 312 system with MAT-SS-300 data system, EI, 70 eV and Varian 3700, 30 m × 0.3 cm DB-1 fused-silica column; H₂ was used as carrier gas; temp. programme 80–300° (3°C min⁻¹).

Plant material. Air-dried roots (2 kg) of P. ostruthium were obtained from Fa. E. Ritzberger, Linz, Austria. The plant material was authenticated by microscopy and TLC. A voucher specimen (Sch.D./91) is deposited at the Institute of Pharmacognosy at Graz.

Isolation of compound 1. Roots were extracted with 15% EtOH at room temp, the extract was concd in vacuo and perforated with petrol and Et₂O. The remaining aq. layer was subjected to CC (Polyamide, H₂O-MeOH gradient). Frs of 500 ml were collected and monitored by TLC. Frs 92-100 were combined and compounds sepd by prep. TLC. Final purification was

carried out on Sephadex LH-20 with MeOH to give 2.5 mg 1. Needles from MeOH, mp 257-260°.

Isolation of compound 2. Roots (500 g) were extracted with MeOH at room temp. The MeOH soln was evapd to dryness in vacuo. The residue was suspended in H_2O and extracted with petrol. The petrol layer was concd to give a ppt. of needles containing a mixt. of 2, oxypeucedanin, isoimperatorin and oxypeucedanin hydrate. Further purification of the mixt. by prep. TLC on silica gel GF_{254} using $CHCl_3$ -MeOH- H_2O (80:20:21) afforded 3 mg 2. Needles from MeOH, mp 116-119°.

REFERENCES

- Murray, R. D. H., Mendez, J. and Brown, S. A. (1982). The Natural Coumarins, pp. 580, 579. John Wiley, New York.
- Khaled, A. S., Szendrei, K., Novak, I. and Reisch, J. (1975) Phytochemistry 14, 1461.
- 3. Reisch, J., Khaled, A. S., Szendrei, K. and Novak, I. (1975) *Phytochemistry* **14**, 1890.
- Lassak, E. V. and Southwell, I. A. (1972) Aust. J. Chem. 25, 2491.
- Harkar, S., Razdan, T. K. and Waight, E. S. (1984) Phytochemistry 23, 419.