PII: S0031-9422(96)00525-0

BIOTRANSFORMATION OF LIGNANS: *META-O*-DEMETHYLATION OF (-)-MAGNOFARGESIN IN *SPODOPTERA LITURA*

HIROYUKI KASAHARA, MITSUO MIYAZAWA* and HIROMU KAMEOKA

Department of Applied Chemistry, Faculty of Science and Engineering, Kinki University, Kowakae, Higashiosaka-shi, Osaka 577, Japan

(Received in revised form 26 June 1996)

Key Word Index—*Spodoptera litura*; Noctuidae; 7.9'-epoxylignan; (-)-magnofargesin; (-)-3-*O*-demethylmagnofargesin; biotransformation.

Abstract—Biotransformation of (-)-magnofargesin in *Spodoptera litura* larvae has been investigated. (-)-Magnofargesin was *O*-demethylated, at the *meta*-position of its 3,4,5-trimethoxyphenyl group, to (-)-3-*O*-demethylmagnofargesin. Copyright © 1996 Elsevier Science Ltd

INTRODUCTION

We have been investigating the biotransformation of lignans and neolignans. Thus it was revealed that the first metabolic reaction of 7.9',7',9-bisepoxylignans such as (+)-magnolin in mammal (rat) [1], insect (Spodoptera litura larvae) [2] and a fungus (Aspergillus niger) [3] was the same O-demethylation at the paraposition of their aryl groups. In addition, 7.7'-epoxylignans such as (+)-veraguensin were also O-demethylated at para-position by A. niger [4]. This report deals with biotransformation of (-)-magnofargesin (1) [5], a member of the 7.9'-epoxylignans, by S. litura larvae.

RESULTS AND DISCUSSION

The faeces of (-)-magnofargesin-administered larvae were collected and extracted with CHCl₃ and EtOAc. The sole metabolic product **2** was detected on TLC and GC (conversion rate: 40%). The combined organic layer was chromatographed on a SiO₂ gel column. The

metabolic product 2 was recrystallized from ether and 15 mg was isolated.

The metabolic product 2 had a molecular formula $C_{22}H_{26}O_7([M]^+ m/z 402.1674 \Delta 0.5 \text{ mmu})$, which was one CH, mass unit less than 1, established by HRMS and NMR data. The specific rotation showed that 2 was the (-)-form. The infrared spectrum contained a wide hydroxyl band at 3439 cm⁻¹. The mass spectrum of 2 showed two assignable ions at m/z 220 $[M - ArCO]^+$ $(Ar = 7-aryl group) \text{ and } 189 [220 - CH_2OH]^+$. Those ions were contained in the mass spectrum of 1. The NMR spectra of 2 were similar to those of 1 except for the existence of a hydroxyl group and the disappearance of a methoxyl group. The previous results for the biotransformation of 7,9',7',9-bisepoxylignans and 7,7'-epoxylignans reminded us that the regioselective O-demethylation at para-position also occurred in this 7,9'-epoxylignan. However, 'H NMR signals for H-2 and 6 shifted at δ 6.58 and 6.62, respectively, while H-2 and 6 of 1 shifted at δ 6.63. Detailed analysis of NMR and DEPT spectra showed that 2 possesses a 4,5-dimethoxy-3-hydroxyphenyl group. All these spec-

^{*}Author to whom correspondence should be addressed.

1218 H. Kasahara et al.

tral data show that **2** is (-)-3-*O*-demethylmagnofargesin.

Biotransformation of (-)-magnofargesin (1) by *S. litura* larvae afforded the single metabolite, (-)-3-*O*-demethylmagnofargesin (2). No glycoside of 2 was obtained while glucosides were obtained when 7,9',7',9-bisepoxylignans such as (+)-magnolin were transformed by this insect [9]. Furthermore, 2 is a new lignan differ from the naturally occurring lignan in possessing a phenolic hydroxyl group in the *meta*-position of the aromatic ring [6]. Biological evaluation of 2 is underway.

EXPERIMENTAL

Isolation of (-)-magnofargesin. (-)-Magnofargesin (1) was prepared from Magnolia fargesii by previously reported methods [5].

Table 1. NMR spectral data for (-)-3-O-demethylmagnofargesin (2)

Position	¹ H	¹³ C
1		135.0
2	6.54 (d, J = 2)	105.9
3		149.3
4		137.5
5		152.5
6	6.64 (d, J = 2)	102.0
7	4.82(d, J=6)	82.0
8	2.97 (m)	55.0
9	3.82 (dd, J = 11, 5)	62.9
	3.95 (dd, J = 11, 6)	
1'		139.3
	6.70(d, J = 2)	111.5
2' 3' 4'		148.9
4'		148.2
5'	6.88 (d, J = 8)	111.2
6'	6.72 (dd, J = 8, 2)	120.7
7'	6.39 (dd, J = 2, 2)	121.7
8'		129.9
9,	4.75 (ddd, J = 14, 2, 2)	70.1
	4.91 (dd, J = 14, 2)	
OMe		
4	$3.86(s)^{4}$	60.9
5	$3.88(s)^{a}$	55.9
3'	3.90(s)	55.9
4'	3.90(s)	55.9
9-OH	1.66 (br s)	
ArOH	5.77(s)	

¹H NMR recorded at 270.1 MHz in CDCl₃, *J* in hertz, and TMS as internal standard.

Insect and cultivation conditions. Fifty larvae of S. litura were grown at 25° , and fed a commercial artificial diet (Insecta LF, Nihon Nosan Kogyo) until larvae had been transformed into the third instar. After the third instar, larvae were fed an artificial diet: kidney bean (wet) $100 \, \text{g}$, agar $4.5 \, \text{g}$, $H_2O \, 180 \, \text{ml}$.

Administration of 1 to larvae. Fifty larvae (fourth to fifth instar) were fasted for 2 days before administration of 1 (224 mg). (-)-Magnofargesin (1) was incorporated into the artificial diet (100 g) using cellose powder as an inert carrier and fed to larvae. After eating the artificial diet containing 1 (2 days), they were fed the artificial diet furthermore.

Isolation of metabolite 2 from faeces. Faeces were collected for 4 days, extracted by CHCl₃ (100 ml \times 3) and then EtOAc (100 ml \times 2), and evaporated under reduced pressure. The combined extract (283 mg) of 1 administered-larvae faeces was separated into acidic (30 mg), phenolic (127 mg) and neutral (116 mg) portions in the usual way. Then the phenolic portion was subjected to SiO₂ CC repeatedly to give a metabolite 2 (15 mg). No metabolic products were detected from acidic and neutral portion by TLC and GC-MS.

GC-MS analysis. The combined extract of 1 administered-larvae faeces was analyzed by GC-MS. Analysis was carried out using a capillary column: HP-5MS (cross linked 5% Ph Me silicone 0.25 mm i.d. \times 30 m). Programming from 150° to 315° at 4° min⁻¹ and then held at 315°. The flow rate of carrier gas (He) was 1 ml min⁻¹. (-)-Magnofargesin (1) was detected at R_t : 38.78 min.

(-)-3-O-Demethylmagnofargesin (2). Powder. R_f : 39.36 min. HRMS m/z: 402.1674 ([M]⁺, calcd for $C_{22}H_{26}O_7$: 402.1679). EIMS m/z (rel. int.): 402 ([M]⁺, 60), 220 (60), 202 (20), 190 (21), 189 (100), 181 (10), 161 (25). [α]_D²⁰ - 45.77° (CHCl₃; c 0.2). IR ν _{max} cm⁻¹: 3439, 2935, 1596, 1516, 1464, 1261, 1239, 1026. NMR: Table 1.

REFERENCES

- Miyazawa, M., Kasahara, H. and Kameoka, H., Phytochemistry, 1993, 32, 1421.
- Miyazawa, M., Kasahara, H. and Kameoka, H., Phytochemistry, 1995, 39, 1027.
- 3. Miyazawa, M., Kasahara, H. and Kameoka, H., *Phytochemistry*, 1993, **34**, 1501.
- 4. Kasahara, H., Miyazawa, M. and Kameoka, H., *Phytochemistry*, 1996, **43**, 111.
- Miyazawa, M., Kasahara, H. and Kameoka, H., Phytochemistry, 1996, 42, 531.
- Ayres, D. C. and Loike, J. D., Lignans. Chemical Biological and Clinical Properties. Cambridge University Press, Cambridge, U.K., 1990.

¹³C NMR at 67.8 MHz in CDCl₃, TMS as internal standard.

Interchangeable.