PII: S0031-9422(96)00426-8

ROSMARINIC ACID FROM LAVANDULA VERA MM CELL CULTURE

E. KOVATCHEVA,* A. PAVLOV,† I. KOLEVA,† M. ILIEVA† and M. MIHNEVA†

Department of Analytical Chemistry, Higher Institute of Food Industry, Plovdiv, Bulgaria †Laboratory of Biotechnology and Industrial Microbiology, Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria

(Received in revised form 23 May 1996)

Key Word Index—Lavandula vera; Lamiaceae; plant cell culture; rosmarinic acid; caffeic acid.

Abstract—Rosmarinic acid was isolated as the main phenolic component of *Lavandula vera MM* cell culture. It was identified by means of TLC, HPLC, ¹H NMR, ¹³C NMR and mass spectroscopy. Copyright © 1996 Elsevier Science Ltd

INTRODUCTION

In vitro cultured cells of Lavandula vera, which were being examined as a potential source of biotin [1, 2], were found out to synthesize and excrete a blue pigment into the cultural medium [3–5]. This was identified by Banthorpe et al. [6] as an enol ester of caffeic acid. We also obtained cell cultures of this species, using L. vera plants that produce phenolic compounds with antimicrobial and antioxidant activities [7]. This paper deals with the identification and quantitative determination of the main phenolics found in this cell culture.

RESULTS AND DISCUSSION

A methanolic extract from fresh cells of *L. vera MM* grown in LS medium [8] for nine days was used. The UV spectrum showed maxima between 280 and 340 nm, indicative of the presence of phenolic acids. Rosmarinic (RA), caffeic (CA), *p*-coumaric and ferulic acids were identified in the extracts by TLC. The

Table 1. Content of phenolic acids in cell biomass of *Lavandula vera MM*

Compound	Content* (mg g dry wt)
Rosmarinic acid	5.15±0.73
Caffeic acid p-Coumaric acid	0.37±0.02 Trace
Ferulic acid	Trace

^{*}Data represent the mean values of five different flasks and standard deviation.

extracts contained a comparatively large amount of RA, smaller amounts of CA and traces of *p*-coumaric and ferulic acids (Table 1).

Banthorpe and co-workers [6, 9] reported that the main phenolic compound synthesized by *L. vera* callus culture was a blue pigment, which they identified as a complex of Fe(II) with the isomers of an enol ester formed by condensation of dopaldehyde with caffeic acid. Our *L. vera MM* strain, however, produced mainly RA. The latter was isolated from ethylacetate extracts of cell biomass as a yellowish powder (see Experimental) and its identity was confirmed by means of HPLC with a photodiode array detector, ¹H NMR, ¹³C NMR and mass spectroscopy [10–12]. This is the first report on the synthesis of RA by a *L. vera* cell culture, although RA is known to be synthesized by cultures of other species of the Lamiaceae [13–15].

EXPERIMENTAL

Culture method. Callus culture strain L. vera MM was originally derived from the leaves of L. vera plants in LS basal agar medium [8] containing 0.2 mg 1⁻¹ 2,4-dichlorophenoxyacetic acid and 3% sucrose. It was subcultured on the same medium at 25–28° in the dark for more than 3 years at 2 week intervals. L. vera MM cell suspension cultures were grown using the same liquid medium [8] in Erlenmeyer flasks with 1/5 net vol. on the shaker (11.6 rad s⁻¹). It was subcultured at intervals of 1 week for 1 year. Cell biomass was harvested for chemical analyses 9 days after inoculation.

Extraction and isolation. Cells (20 g fr. wt) were extracted with MeOH (3×100 ml). The combined extracts were evapd in vacuo and the dry residue was extracted again with EtOAc (2×50 ml). The EtOAc extracts were evd to dryness. The residue was dissolved

^{*}Author to whom correspondence should be addressed.

in a minimum vol. of MeOH and subjected to chromatography.

TLC and HPLC. MeOH and EtOAc extracts were fractionated by TLC (silica gel GF 254) using the following systems: (1) toluene–EtOAc–HOAc–MeOH–H₂O (20:60:10:20:3); (2) toluene–EtOAc–HOAc (4:5:2) and (3) CHCl₃–MeOH–H₂O (30:11:2).

RA was isolated from the EtOAc extract by prep. TLC on silica gel GF₂₅₄ using solvent system 1.

HPLC analyses were carried out on a Perkin Elmer liquid chromatograph with UV detection. The conditions were: analyt. column PEC $_{18}$ (10 μ m, 250 × 4.6 mm i.d.); mobile phase: 2% HOAc (A) and 2% HOAc–MeCN (7:3) were used and a linear gradient 70–30% A over 40 min was applied; flow rate: 1 ml min $^{-1}$; pressure: 10 MPa; detection at 280 nm. Authentic samples of RA, CA and p-coumaric and ferulic acids were used as markers. The external standard method was used for quantitative determination of the analysed compounds.

Acknowledgment—The authors gratefully acknowledge the financial support of the National Research Foundation of Bulgaria.

REFERENCES

- Watanabe, K., Yano S. and Jamada, J. (1983) Phytochemistry 21, 513.
- Watanabe, K. and Jamada, J. (1982) Plant Cell Physiol. 23, 1453.
- 3. Watanabe, K., Sato, F., Furuta, M. and Yamada, Y.

- (1985) Agric. Biol. Chem. 49, 533.
- Nakajima, H., Sonomoto, K., Usni, N., Sato, F., Yamada, Y., Tanaka, A. and Fukui, S. (1985) J. Biotechnol. 2, 107.
- Nakajima, H., Sonomoto, K., Movikana, H., Satu, F., Ishimura, K., Jamada, Y. and Tanaka, A. (1986) Appl. Microbiol. Biotechnol. 24, 266.
- Banthorpe, D. V., Bilyard, H. J. and Watson, D. G. (1985) Phytochemistry 24, 2677.
- Ilieva, M., Kozhuharova, L., Pavlov, A. and Kovatcheva, E. (1994) Proceedings of the International Euro Food Tox IV Conference Bioactive Substances in Food of Plant Origin, II. Centre for Agrotechnology and Veterinary Sciences, Polish Academy of Sciences, Olsztyn, Poland.
- 8. Linsmayer, E. F. and Skoog, F. (1965) *Physiol. Plant.* **18**, 100.
- 9. Banthorpe, D. V. Bilyard, H. J. and Brown, G. D. (1989) *Phytochemistry* 28, 2109.
- Newbert, L. A., Breneman, W. R. and Carmack, M. (1975) J. Org. Chem. 40, 1804.
- Kelly, C., Harruff, R. C. and Carmack, M. (1976)
 J. Org. Chem. 41, 449.
- 12. Fukui, H., Yazaki, K. and Tabata, M. (1984) *Phytochemistry* 23, 2398.
- De-Ekmankul, W. and Ellis, B. E. (1988) in Biotechnology in Agriculture and Forestry, Vol. 4, Medical and Aromatic Plants (Bajaji, J. P., ed), p. 310. Springer, Berlin.
- 14. Zenk, M. N., El-Shigi, H. and Ulbrich, B. (1977) Naturwissenschaften 64, 585.
- Hyppolyte, L., Marin, B., Baccen, J. C. and Jonard, R. (1992) Plant Cell Rep. 11, 109.