PII: S0031-9422(96)00453-0

CARBAZOLE ALKALOIDS FROM STEM BARK OF CLAUSENA EXCAVATA

TIAN-SHUNG WU,* SHIOW-CHYN HUANG and PEI-LIN WU

Department of Chemistry, National Cheng Kung University, Tainan, Taiwan, R.O.C.

(Received in revised form 28 May 1996)

Key Word Index—Clausena excavata; Rutaceae; stem bark; carbazole alkaloids; clausines A, C, G and J.

Abstract—Four new carbazole alkaloids, clausines A, C, G and J were identified as 3-formyl-2-hydroxy-8-methoxycarbazole 3-carbomethoxy-7-methoxycarbazole, 3-carbomethoxy-1-hydroxy-6-methoxycarbazole and 3-formyl-1, 7-dihydroxy-6-methoxycarbazole, respectively, from a methanol extract of the stem bark of *Clausena excavata*. Structures were established by spectroscopic analyses. Copyright © 1996 Elsevier Science Ltd

INTRODUCTION

In a previous paper, we reported the isolation and antiplatelet aggregating action of carbazole alkaloids from the stem bark of *Clausena excavata* [1]. An extensive reinvestigation of the isolated unknown compounds a(1), b(2), d(3) and e(4) led to the identification of their structures as clausines A, C, G and J, respectively. We describe the structural elucidation of these new carbazole alkaloids.

RESULTS AND DISCUSSION

Clausine A (1) was determined to have the molecular formula C14H11NO3 by high-resolution mass spectrometry. The UV spectrum, with absorption bands at 202, 218, 241, 268 (sh), 275, 288 and 352 nm, and the IR spectrum, with bands at 3400 and 3225 cm⁻¹, indicated that the structure of compound 1 was very close to the carbazole alkaloid, mukonal (5) [2]. In the ¹H NMR spectrum, a characteristic aldehydic signal at δ 9.99 appeared on C-3, as well as a phenolic hydroxyl at δ 11.42 located on C-2 shifted to lowerfield, indicating intramolecular hydrogen bonding. The presence of a 3-CHO and a 2-OH caused the chemical shift of the neighbouring proton H-1 (δ 6.94) to move upfield and H-4 (δ 8.44) to shift downfield in the aromatic region. Except for these two singlets for ring-C protons, there were three mutually coupled proton signals at δ 6.99 (1H, d, J = 8.0 Hz, H-7), 7.17 (1H, t, J = 8.0 Hz, H-6)and 7.68 (1H, d, J = 8.0 Hz, H-5) assignable for H-7, H-6 and H-5 in ring-A, respectively. The remaining substituent on C-8 was found to be a methoxyl group because of the presence of a three-proton singlet at

 δ 3.99. On the basis of the above evidence, the structure 3-formyl-2-hydroxy-8-methoxycarbazole (1) was deduced for clausine A.

$$R_6$$
 R_7
 R_8
 R_1
 R_3
 R_2

	R_1	R_2	R ₃	R_6	R_7	R ₈
1 2 3 4 5	H H H H H H H	OH H H OH	CHO CO₂Me CO₂Me CHO CHO CHO	H H OMe OMe H OMe	H OMe H OH H H	OMe H H H H

Clausine C (2) had the molecular formula C₁₅H₁₃NO₃. In addition to two close methoxyls at δ 3.87 and 3.89, two sets of ABX-pattern signals at δ 6.87 (dd, J = 8.6, 2.2 Hz), 7.08 (d, J = 2.2 Hz) and 8.09 (d, J = 8.6 Hz); 7.49 (d, J = 8.1 Hz), 7.98 (dd, J = 8.1, 1.5 Hz) and 8.68 (d, J = 1.5 Hz) appeared in the aromatic region of its ¹H NMR spectrum. The lower field shift signals in the latter set and the IR absorption at 1700 cm⁻¹, as well as the mass spectral fragment ion at m/z 196 ([M – CO₂Me])⁺, indicated the presence of a carbomethoxyl substituent on C-3. The other methoxyl on C-7 was confirmed by the upfield shift signal of H-8 (δ 7.08) and the downfield shift signal of H-5 (δ 8.09) in the former set. Consequently, the structure of 3-carbomethoxy-7-methoxyearbazole (2) was deduced for clausine C.

^{*}Author to whom correspondence should be addressed.

1428 Short Reports

Fig. 1. NOESY spectra of compounds 3 and 4.

Clausine G (3) was found to have the molecular formula C₁₅H₁₃NO₄. In the aromatic region of the ¹H NMR spectrum, the chemical shifts and splitting patterns were very similar to those of clausine I (6) [1]. A pair of *meta*-coupled protons at δ 7.55 (d. $J = 1.4 \,\mathrm{Hz}$) and 8.36 (d. J = 1.4 Hz) for H-2 and H-4, respectively. and ABX protons at δ 7.07 (dd, J = 8.5, 2.4 Hz), 7.51 (d, J = 8.5 Hz), 7.75 (d, J = 2.4 Hz) for H-7. H-8 andH-5, respectively, were present. In addition, a methoxyl at δ 3.92 on C-6 was supported by the presence of a NOE cross-peak between this signal and the signal at δ 7.75 (H-5) (Fig. 1). The presence of a carbomethoxyl group on C-3 was proved by the existence of a methoxyl signal at δ 3.89 in the ¹H NMR spectrum, a carbonyl signal at δ 168.0 in the ¹³C NMR spectrum and a band at 1670 cm in the IR spectrum. Accordingly, the extra hydroxyl at δ 9.29 should be located on C-1. The full assignments of ¹H and ¹⁵C NMR signals were further confirmed by the ¹H-¹³C long-range correlations in the HMBC spectrum (Fig. 2). Therefore, the above spectral data indicated the structure of clausine-G **(3)** as 3-carbomethoxy-1-hydroxy-6methoxycarbazole.

Clausine J (4) had the molecular formula $C_{14}H_{11}NO_4$. From the ¹H NHR spectrum, the 3-CHO (δ 9.94) and 1-OH (δ 9.31) signals, together with those of two meta-coupled protons, H-2 (δ 7.30) and H-4 (δ 8.10), enabled the partial structure 1-hydroxy-3-formyl on ring-C to be deduced. This was supported by

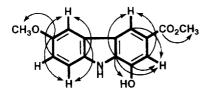


Fig. 2. H⁻¹³C long-range correlations in HMBC spectrum of compound **3**.

the aldehyde signal showing NOEs with the two protons. H-2 and H-4 (Fig. 1). Hence, the two lone singlets at δ 7.09 and δ 7.74 were attributed to H-8 and H-5, respectively. The remaining two substituents, a hydroxyl at δ 7.80 and a methoxyl at δ 3.98, were found in the ¹H NMR spectrum. The existence of NOEs between the methoxyl and H-5 suggested that this methoxyl was attached to C-6, whereas the hydroxyl was located on C-1 (Fig. 1). On the basis of the foregoing spectral analyses, the structure of clausine J (4) was established as 3-formyl-1,7-dihydroxy-6-methoxycarbazole.

EXPERIMENTAL

General. Mps: uncorr. UV: MeOH. IR: KBr. ¹H and ¹³C NMR: Me₂CO-d₆ with TMS as int. ref., except where noted. MS: direct inlet.

Plant material, extraction and isolation. The isolation procedure was as described in the ref. [1] Four unidentified compounds **a**, **b**, **d** and **e** from the MeOH extract of the stem bark of C. excavata were determined as 1, 2, 3 and 4.

Clausine A (1). Yellowish needles (Me₂CO), mp 184–186°. HR-MS: calcd for $C_{14}H_{11}NO_3$, m/z 241.0739 [M]⁺, found 241.0738. UV λ_{max} nm (log ε): 202 (4.27), 218 (4.33), 241 (4.52), 268 (4.42, sh), 275 (4.53), 288 (4.38), 352 (4.04). IR ν_{max} cm⁻¹: 3400, 3225, 1675, 1650, 1625, 1590. EI-MS m/z (rel. int.): 241 ([M]⁺, 100), 226, (32), 198 (52), 141 (11), ¹H NMR: δ 3.99 (3H, s, 8-OMe), 6.94 (1H, s, H-1), 6.99 (1H, s, s, 4-20 Hz, H-5), 7.68 (1H, s, s, 4-30 Hz, H-5), 8.44 (1H, s, H-4), 9.99 (1H, s, CHO), 10.85 (1H, s, NH), 11.42 (1H, s, 2-OH).

Clausine C (2). Yellowish needles (Me₂CO), mp 195–197°. HR-MS: calcd for C₁₅H₁₃NO₃, m/z 255.0895 [M], found 255.0891. UV $\lambda_{\rm max}$ nm: 220, 239 (sh). 249, 282, 308 (sh), 320 (sh). IR $\nu_{\rm max}$ cm⁻¹: 3280, 1700, 1605. EI-MS m/z (rel. int): 255 ([M], 100). 240 (21). 224 (39), 212 (24), 196 (17), 181 (12). H NMR: δ 3.87 and 3.89 (each 3H, s, 3-CO₂Me and 7-OMe), 6.87 (1H, dd, J = 8.6, 2.2 Hz. H-6), 7.08 (1H, d, d, d = 2.2 Hz, H-8), 7.49 (1H, d, d, d = 8.1 Hz, H-1), 7.98 (1H, dd, d = 8.1, 1.5 Hz, H-2), 8.09 (1H, d, d = 8.6 Hz, H-5), 8.68 (1H, d, d = 1.5 Hz, H-4) 10.65 (1H, s, NH).

Clausine G (3). Granules (Me₂CO), mp>280°. HR-MS: calcd for $C_{18}H_{13}NO_4$, m/z 271.0847 [M]⁺, found 271.0845. UV λ_{max} nm: 224, 272, 282, 316 (sh), 353 (sh). IR ν_{max} cm⁻¹: 3350, 1690, 1670. EI-MS m/z (rel. int.): 271 ([M]⁺, 100) 256 (71), 240 (15). ¹H NMR: δ 3.89 (3H, s. 3-OMe), 3.92 (3H, s. 6-OMe), 7.07 (1H, dd. J = 8.5. 2.4, Hz. H-7), 7.51 (1H, d, J = 8.5 Hz, H-8), 7.55 (1H, d, J = 1.4 Hz, H-2), 7.75 (1H, d, J = 2.4 Hz. H-5). 8.36 (1H, d, J = 1.4 Hz, H-4), 9.29 (1H, br s, 1-OH), 10.50 (1H, s, NH). ¹³C NMR: δ 51.9 (q, 3-OMe), 56.1 (q, 6-OMe), 103.7 (d, C-5), 111.2 (d, C-2), 113.2 (d, C-8). 115.7 (d, C-4), 116.6 (d, C-7), 122.0 (s, C-4a), 125.0 (s, C-3 and C-5a), 134.4 (s, C-1a), 136.1

Short Reports 1429

(s, C-8a), 143.5 (s, C-1) 155.3 (s, C-6), 168.0 (s, C=O).

Clausine J (4). Powder (Me₃CO), mp>290°. HR-MS: calcd for C₁₄H₁₁NO₄, m/z 257.0688 [M]⁺, found 257.0689. UV λ_{max} nm: 235, 255 (sh), 289, 305, 347 (sh). IR ν_{max} cm⁻⁺: 3430, 1650. EI-MS m/z (rel. int.): 257 ([M]⁺, 80), 242 (100), 214 (36), 57 (17). ¹H NMR: δ 3.98 (3H, s, 6-OMe), 7.09 (1H, s, H-8), 7.30 (1H, d, J=1.0 Hz, H-2), 7.74 (1H, s, H-5), 7.80 (1H, br s, 7-OH), 8.10 (1H, br s, H-4), 9.31 (1H, br s, 1-OH), 9.94 (1H, s, 3-CHO), 10.46 (1H, br s, NH).

Acknowledgment—We thank the National Science Council, R.O.C. (NSC 80-0420-B-006-07) for support of this research.

REFERENCES

- 1. Wu, T. S., Huang, S. C., Wu, P. L. and Teng, C. M. (1996) *Phytochemistry*, **43**, 133.
- 2. Bhattacharyya, P. and Chakroborty, D. P. (1984) *Phytochemistry* **23**, 471.