PII: S0031-9422(96)00518-3

TRITERPENOIDS AND FLAVONOIDS FROM PAEONIA LACTIFLORA

KOHEI KAMIYA, KAZUKO YOSHIOKA, YASUHISA SAIKI, AKIRA IKUTA† and TOSHIKO SATAKE*

Faculty of Pharmaceutical Science, Kobe Gakuin University, Ikawadani-cho, Nishi-ku, Kobe 651-21, Japan; †The Research Institute for Sciences, Science University of Tokyo, 2669 Yamazaki, Noda City, Chiba 278, Japan

(Received in revised form 4 June 1996)

Key Word Index—Paeonia lactiflora; Paeoniaceae; plant; callus tissue; triterpenoid; monoterpenoid; flavonoid; paeoniflorin.

Abstract—Seven triterpenoids and two flavonoids were isolated from the roots and aerial parts of *Paeonia lactiflora*, respectively. This is the first report of triterpenoids, which is a new triterpene assigned as 11α , 12α -epoxy- 3β , 23-dihydroxy-30-norolean-20(29)-en-28,13 β -olide, from this plant. Copyright © 1996 Elsevier Science Ltd

INTRODUCTION

Paeonia lactiflora is one of the most important crude drugs in traditional Chinese medicine. Chemical studies on *P. lactiflora* have been carried out by many investigators, and the presense of the monoterpene glycoside, paeoniflorin and its related compounds has been reported [1-4].

In an earlier paper, we reported on the accumulation of 11 triterpenoids in the callus tissues of paeoniaceous plants (*P. lactiflora*, *P. japonica*, *P. suffruticosa*); however, paeoniflorin and related compounds were not produced [5]. The presence of triterpenoids in roots of the plant (*P. lactiflora*) has never been reported. The present paper reports on the presence of triterpenes together with flavonoid glycosides in the plant.

RESULT AND DISCUSSION

Seven triterpenes (1-7) were isolated from the roots of *P. lactiflora*. Triterpenes 1-5 were identified by comparsion of their spectral data with those of authentic samples as oleanolic acid (1), hederagenin (2), 11α , 12α -epoxy- 3β ,23-dihydroxyolean-28,13 β -olide (3), 30-norhederagenin (4) and betulinic acid (5), which were isolated in a previous study [5]. Furthermore, two flavonoid glycosides were isolated from the aerial part of the plant. These were identified as kaempferol-3-O- β -D-glucoside (8) and kaempferol-3,7-di-O- β -D-glucoside (9).

Compound 6 was obtained as an amorphous powder. Its IR spectrum showed the presence of an aldehyde group (1724 cm⁻¹). The ¹H NMR spectrum was similar to that of compound 1, except for a signal due to an

aldehyde (δ 9.50), indicating it to be an oleanan type triterpene. The mass spectrum of compound **6** exhibited the [M]⁺ peak at m/z 440 and prominent fragment ion peaks at m/z 232 and 207 were derived by a retro-Diels-Alder type fragmentation in ring C. In the ¹³C NMR spectrum, a carbon signal at δ 208.2 revealed the presence of an aldehyde group at C-17 in compound **6** instead of the carboxyl group (δ 180.2) found in compound **1**. Thus, compound **6** was assigned as 3β -hydroxyolean-12-en-28-al, which was previously isolated from the galls of *Pistacia terebinthus* (Anacardiaceae) [6].

Compound 7 was obtained as an amorphous powder. Its molecular formula was determined as C₂₉H₄₂O₅ on the basis of its HR-mass spectrum (m/z) 470.3040 [M] +). Furthermore, the mass fragementation compound 7, exhibited the characteristic pattern of a $11\alpha,12\alpha$ -epoxy- γ -lactone of the oleanane series, i.e. significant peaks at m/z 247 and 251 formed by decomposition accompanied with rearrangement together with the $[M]^+$ peak at m/z 470 [7] (Scheme 1). The IR spectrum showed absorption bands at 1652 and 894 cm⁻¹, suggesting the presence of an exomethylene in addition to the absorption bands of an epoxide ring (872 cm⁻¹) and a γ -lactone (1776 cm⁻¹). The presence of the exomethylene was supported also by proton signals at δ 4.70 (1H, s) and 4.66 (1H, s) and carbon signals at δ 147.7 (s) and 109.8 (t) in the NMR spectra. Furthermore, the ¹³C NMR spectrum of compound 7 was analogous to that of compound 3, except for the signals corresponding to ring E. The signals due to C-20 (δ 31.5) and the geminal dimethyl groups (δ 33.1 and δ 23.5) in compound 3 were displaced in the carbon signals at δ 147.7 (s) and δ 109.8 (t) ascribed to the exomethylene in compound 7. Consequently, the location of the exomethylene in compound 7 was regarded at C-20. Thus, compound 7 was determined as

^{*}Author to whom correspondence should be addressed.

142 K. Kamiya et al.

 11α , 12α -epoxy- 3β , 23-dihydroxy-30-norolean-20(29)-en-28, 13β -olide. This is the first report of this compound from a natural source.

Seven triterpenes were isolated as minor constituents (0.025% dry wt) from the roots of the plant together with paeoniflorin (2.1% dry wt) as a main constituent. In addition, two flavonoids (1.06% dry wt) were isolated from the aerial parts of the plant. Oleanane and lupane type triterpenoids are biosynthesized in both of the callus tissues (5.94% dry wt) and the wild roots [5], but the former contained no paeoniflorin or other flavonoids [5].

EXPERIMENTAL

General procedures. Mp: uncorr.; ¹H and ¹³C NMR: 400 MHz, 303 K, TMS as int. standard; IR. KBr. MS: Hitachi M-80A.

Extraction and isolation. Dried roots of P. lactiflora (5 kg) were extracted with MeOH under reflux. After removal of the solvent under red. pres., the MeOH extract was partitioned into a mixture of H₂O and CHCl₃ (1:1). The CHCl₃-soluble phase was chromatographed on silica gel (Fuji gel BW-300), using a gradient CHCl₃ and MeOH (100:0-70:30) and finally, MeOH, to give triterpenoids-containing frs. These frs were purified repeatedly by CC on silica gel (CIG column system, Kusano) using hexane-EtOAc-MeCN to give compounds 1-7.

Dried aerial parts of *P. lactiflora* (500 g) were extracted with MeOH under reflux. The combined MeOH extracts were passed over activated charcoal packed in a column and were further eluted with MeOH and CHCl₃-MeOH (3:7). The combined MeOH soln was concentrated *in vacuo* and purified repeatedly by CC on silica gel using CHCl₃-MeOH to give compound 8. The CHCl₃-MeOH (3:7) frs were purified

Scheme 1. Mass fragmentation of compound 1.

1 38.9 38.9 38.7 38.8 39.3 39.4 38.6 2 28.1 28.1 27.4 27.7 28.3 27.5 27.4 3 78.9 78.1 73.5 73.0 73.5 78.1 72.9 4 39.4 42.8 43.1 42.9 39.5 39.7 43.1 5 55.8 48.7 48.0 48.7 55.9 56.2 48.0 6 18.8 18.6 17.9 18.6 18.8 19.1 17.9 7 33.2 33.0 31.2 33.0 34.8 33.5 31.2 8 39.8 39.8 41.0 39.8 41.1 40.3 41.0 9 48.1 48.2 49.8 48.1 50.9 49.3 51.3 10 37.4 37.5 37.6 37.8 36.7 37.2 36.7 23.1 52.9 21.2 24.1 53.0 11 23.8 23.8 57.4 122.6 57.3 12 122.6 122.6 122.6 26.1 144.8 142.6 87.1 13 144.8 87.6 144.9 38.6 14 42.2 42.2 41.2 42.0 42.8 42.6 41.7 15 28.3 28.3 27.1 28.3 31.2 27.6 27.1 16 23.7 23.8 21.7 23.8 32.9 22.7 22.0 17 46.7 46.7 44.1 47.1 56.6 49.9 44.1 18 46.5 46.5 51.4 48.0 47.8 48.3 54.8 49.8 19 42.0 42.0 42.0 46.3 34.7 38.1 20 31.0 30.9 31.5 151.3 31.1 147.7 148.5 30.2 21 33.7 32.4 34.2 34.2 34.5 38.4 22 33.3 33.2 27.7 30.4 37.6 28.4 30.2 23 28.3 68.0 67.7 68.1 28.6 29.2 67.1 24 17.0 12.7 16.5 13.0 12.7 13.1 16.3 25 15.6 15.9 17.7 16.4 15.9 17.7 16.0 26 17.4 17.5 18.9 17.5 16.4 17.8 18.9 20.4 27 26.2 26.2 20.5 26.2 14.9 26.1

Table 1. ¹³C NMR spectral data for compounds 1-7 in pyridine-d₅

repeatedly by CC on silica gel using EtOAc-MeOH- H_2O to give compound 9.

180.2

33.3

23.8

180.2

33.2

23.7

178.9

33.1

23.5

179.4

107.0

178.9

109.9

19.4

28

29

30

3β-Hydroxyolean-12-en-28-al (6). Amorphous powder. MS m/z (rel. int.): 440 [M]⁺ (14), 232 (23), 207 (30), 204 (14), 203 (67), 189 (30); IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3428 (OH), 1724 (aldehyde); ¹H NMR (pyridine- d_5): δ 9.50 (1H, s), 5.29 (1H, t-like), 3.30 (1H, dd, J = 5,11 Hz), 2.67 (1H, dd, J = 4, 14 Hz), 1.10, 1.07, 0.90, 0.83, 0.82, 0.75, 0.68 (each 3H, each s); ¹³C NMR (pyridine- d_5): Table 1.

11α,12α - Epoxy - 3β, 23 - dihydroxy - 30 - norolean - 20(29) - en - 28, 13β - olide (7). Amorphous powder, $[\alpha]_0^{d27}$ + 78.4° (c = 0.89, CHCl₃). MS m/z (rel. int.: 470[M] + (16), 251 (67), 247 (58), 232 (36), 219 (38), 201 (44), 189 (59), IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3416 (OH), 1776 (γ-lactone), 1650 (exomethylene), 872 (epoxy), ¹H NMR (pyridine- d_5) δ: 4.70 (1H, s), 4.66 (1H, s), 4.23 (1H, dd, J = 5.2, 11.2 Hz), 4.19 (1H, d, J = 10.5 Hz), 3.69 (1H, d, J = 10.5 Hz), 3.18 (1H, d, J = 3.8 Hz), 3.13 (1H, dd, J = 1.6, 3.8 Hz), 2.60 (1H, dd, J = 3.9, 12.9 Hz), 2.34 (1H, dd, J = 3.7, 13.7 Hz), 1.02, 1.03, 1.10, 1.15 (each 3H, each s); ¹³C NMR (pyridine- d_5): Table 1.

Kaempferol-3-O-β-D-glucoside (8). Crystallization from CHCl₃-MeOH yielded yellow needles, mp 177–180°. UVλ_{max} nm (log ε): 205.4 (4.44), 265.4 (4.18), 349.9 (4.11); ¹H NMR (pyridine- d_5) δ: 8.44 (2H, d, J = 8.4 Hz, H-2', 6'), 7.19 (2H, d, J = 8.4 Hz, H3', 5'),

6.70 (2H, *br* s, H-6,8), 6.33 (1H, *d*, J = 7.2 Hz, anomeric-H), 4.24–4.38 (5H, *m*, sugar moiety); ¹³C NMR (pyridine- d_5) δ : 177.4 (C-4), 164.1 (C-7), 161.1 (C-5), 159.8 (C-4'), 156.3 (C-2, 9), 133.0 (C-3), 130.7 (C-2', 6'), 121.0 (C-1'), 115.0 (C-3', 5'), 104.1 (C-10), 101.4 (C-1"), 98.7 (C-6), 93.6 (C-8), 77.2 (C-3"), 76.5 (C-5"), 74.2 (C-2"), 70.1 (C-4"), 61.0 (C-6").

209.2

33.6

24.1

178.2

109.8

Kaempferol-3,7-di-O-β-D-glucoside (9). Crystallization from MeOH yield yellow needles, mp 191–193°. UVλ $_{\rm max}^{\rm MeOH}$ nm (log ε): 203.4 (4.32), 265.4 (4.13), 350.7 (4.06); 1 H NMR (pyridine- $d_{\rm S}$) δ: 8.36 (2H, d, J = 8.8 Hz, H-2′, 6′), 7.14 (2H, d, J = 8.8 Hz, H3′, 5′), 6.96 (1H, d, J = 2.4 Hz, H-8), 6.76 (1H, d, J = 2.4 Hz, H-6), 6.36 (1H, d, J = 7.2 Hz, anomeric-H), 6.74 (1H, d, J = 7.2 Hz, anomeric-H), 6.74 (1H, d, d = 7.2 Hz, anomeric-H), 6.75 (C-7), 160.9 (C-5), 160.1 (C-4′), 157.0 (C-9), 156.1 (C-2), 133.8 (C-3), 130.9 (C-2′, 6′), 120.9 (C-1′), 115.2 (C-3′, 5′), 105.9 (C-10), 101.3 (C-1‴), 100.3 (C-1″), 99.6 (C-6), 94.7 (C-8), 77.4 (C-3‴), 77.3 (C-3″), 76.6 (C-5″, 5‴), 74.4 (C-2‴), 73.3 (C-2″), 70.2 (C-4‴), 70.0 (C-4″), 61.1 (C-6″, 6‴).

Acknowledgements—We express our thanks to Mrs T. Hasegawa, The Central Laboratory of Science, University of Tokyo, for measuring mass spectra and to Miss N. Tachibana, Kobe-Gakuin University, for her help in the isolation of constituents.

144 K. Kamiya et al.

REFERENCES

- Lang, H., Li, S., McCabe, T. and Clardy, J. (1984) Planta Medica 50, 501.
- Jin, Y., Elix, J. A. and Iskander, M. N. (1990) *Phytochemistry* 29, 3859.
- Kaneda, M., Iitaka, Y. and Shibata, S. (1972) Tetrahedron 28, 4309.
- 4. Shimizu, M., Hayashi, T., Morita, N., Kiuchi, F.,
- Noguchi, Y., Iitaka, Y. and Sankawa, U. (1983) Chem. Pharm. Bull. 31, 577.
- 5. Ikuta, A., Kamiya, K., Satake, T. and Saiki, Y. (1995) *Phytochemistry* 38, 1203.
- Monaco, P., Caputo, R., Palumbo, G. and Mangoni, L. (1973) *Phytochemistry* 12, 939.
- 7. Majumder, P. L. and Chakraborty, M. (1979) Tetrahedron 35, 2397.