PII: S0031-9422(96)00462-1

ERGOSTA-5,24(24')-DIENE-3 β , 4 β , 20S-TRIOL, AN ERGOSTANE STEROID FROM DYSOXYLUM MALABARICUM

T. R. GOVINDACHARI,* G. N. KRISHNA KUMARI and G. SURESH

Centre for Agrochemical Research, SPIC Science Foundation, 10 Mount Road, Madras 600 032, India

(Received in revised form 22 May 1996)

Key Word Index—*Dysoxylum malabaricum*; Meliaceae; ergostane steroid, cycloartane triterpenoid; ergosta-5,24(24')-diene- 3β , 4β , 20S-triol.

Abstract—A new ergostane derivative was isolated from the leaves of *Dysoxylum malabaricum* and identified as ergosta-5,24(24')-diene-3 β ,4 β , 20S-triol in addition (24R)-cycloartane-3 β , 24,25-triol and ergosta-5,24(24')diene-3 β , 7 α -diol, were also identified. Copyright © 1996 Elsevier Science Ltd

INTRODUCTION

In our earlier paper [1] we reported the isolation of three dammaranes, i.e. dymalol, shoreic acid and ocotillone, from the leaves of *Dysoxylum malabaricum* Bedd. Further work has afforded a new ergostane derivative, whose structure was established as ergosta-5,24(24')-diene- 3β , 4β , 20S-triol (3) by spectral methods along with a cycloartane derivative, (24R)-cycloartane- 3β -24,25-triol (1) and an ergostane steroid, ergosta-5,24(24') diene- 3β , 7α -diol (2), whose identities were established by comparison of their physical and spectral data with published data.

RESULTS AND DISCUSSION

The hexane extract of the leaves of D. malabaricum was fractionated between n-hexane and 95% methanol and the methanol wash on column chromatography yielded three compounds 1, 2 and 3. Compound 1 was identified as (24R)-cycloartane-3 β -24,25-triol which has been earlier isolated from Mangifera indica (Anacardiaceae) [2] and Juncus effusus (Juncaceae) [3]. Compound 2 was identified as ergosta-5,24(24') diene-3 β , 7α -diol earlier isolated [4] from the marine sponge Stelodoryx chlorophylla Levi (Myxillidae). Identities were established by a comparison of the physical data with those reported previously for these compounds and by the 1 H NMR data.

The structure of compound **3** was established as ergosta-5,24(24')diene-3 β 4 β , 20 β -triol, which is a new steroid. Compound **3** had the molecular formula $C_{28}H_{46}O_3$. Its IR spectrum had bands at 3344 (hydroxyl) and 1645 cm⁻¹ (double bond). The ¹H NMR spectrum (Table 1) showed two secondary methyls

As in other phytosterols one of the hydroxyls was assigned to position C-3. The HOMOCOSY spectrum showed that both the hydroxyls were on adjacent carbons. So it should be a 2,3- or 3,4-dihydroxylated compound. The ¹H NMR signal at δ 4.12 (1H, d, J = 3.5 Hz) showed correlation to the other CHOH at

 $R_1 = H; R_2 = OH; R_3 = H$

 $R_1 = OH; R_2 = H; R_3 = OH$

⁽ δ 1.03, 6H d, J = 6.8 Hz), and three tertiary methyls (singlets) at δ 0.87, 1.18 and 1.3. Two singlets at δ 4.67 and 4.73 indicated the presence of a >C=CH₂. Two signals at δ 3.5 (1 H, td J = 3.5, 11.2 Hz) and δ 4.12 (d, J = 3.5 Hz) were assigned to protons on hydroxylbearing carbon atoms. The ¹³C NMR spectrum (Table 2) of compound 3 showed the presence of two methine carbons bearing oxygen at δ 72.8 and 77.6 and one quaternary carbon atom bearing oxygen at δ 75.4 (s), thus confirming the presence of two secondary hydroxyls and one tertiary hydroxyl. Signals at δ 22.3 (q) for two methyl groups and at δ 106.6, 156.2 (>C = CH₂) were indicative of a 24(24')-methylene side chain sterol [5].

^{*}Author to whom correspondence should be addressed.

Table 1. ¹H NMR spectral data of compounds **2** and **3** (300 MHz, δ values in CDCl₃)

_		3/
H	2	3
3	3.51 m	3.5t d (J = 3.5, 11.2 Hz)
4	_	4.12 d (J = 3.5 Hz)
6	5.58 d (J = 5.2 Hz)	5.67 d (J = 3Hz)
7	3.79 m	
18	0.76 s	0.87 s
19	1.04 s	1.18 s
21	1.01 d (J = 7 Hz)	1.3 s
24'	4.68 br s, 4.74 br s	4.67 br s, 4.73 br s
25	2.21 septet (J = 7 Hz)	$2.23 \ septet \ (J = 6.8 \ Hz)$
26	1.04 d (J = 7 Hz)	1.03 d (J = 6.8 Hz)
27	1.06 d (J = 7 Hz)	1.03 d (J = 6.8 Hz)

 δ 3.5 but not to any other protons, indicating that it was adjacent to a fully substituted carbon. The hydroxyls should therefore be at C-3 and C-4. The ¹H NMR signal at δ 3.5 was coupled also to protons in the methylene region at δ 1.95 and 1.75 in addition to the proton at δ 4.12. So the signal at δ 3.5 was assigned to the C-3 CHOH and the J values (3.5, 11.2 Hz) indicated that the C-3 H was axial and hence the OH was equatorial and β . The other signal at δ 4.12 was assigned to the C-4-CHOH and the J value (3.5 Hz) indicated an equatorial proton at C-4 and so the hydroxyl at C-4 was axial and β . The presence of an internal double bond was indicated by a signal at δ 5.67 (d, 1H, J = 3 Hz). This was further supported by the

Table 2. 13 C NMR spectral data for compounds 2 and 3 (75 MHz, δ values in CDCl₃)

	,	3/
C	2	3
1	37.3 t	37.3 t
2	31.6 t	25.6 t
3	71.5 d	72.8 d
4	42. 4 t	77.6 d
5	146.5 s	143.0 s
6	124.1 d	128.5 d
7	65.6 d	32.2 t
8	37.8 d	31.6 d
9	42.5 d	50.5 d
10	37.7 s	36.2 s
11	21.0 t	20.6 t
12	39.4 t	40.2 t
13	42.3 s	42.9 s
14	49.7 d	57.0 d
15	24.6 t	24.0 t
16	28.5 t	22.6 t
17	55.9 d	58.1 d
18	$11.9 \ q$	13.8 q
19	19.0 <i>q</i>	21.2 q
20	36.0 d	75.4 s
21	18.5 q	26.4 q
22	34.9 t	42.5 t
23	31.1 t	29.1 t
24	157.1 s	156.2 s
24'	106.2 t	106.6 t
25	34.0 d	34.4 d
26	22.3 q	22.3 q
27	22.1 q	22.3 q

Table 3. HMBC connectivities of compound 3 (75 MHz, δ values in CDCl₂)

C	δ (ppm)	Connected protons
3	72.8	H-4
4	77.6	H-6, H-3
5	143	19-CH ₃ , H-4, H-6
6	128.5	H-4
20	75.4	21-CH ₃
24	156.2	H-24, H-24, H-25
24'	106.6	H-25

¹³C NMR signals at δ 143 (s) and δ 128.5 (d). The double bond was placed at the 5,6-position on the basis of HMBC data (Table 3). The quaternary carbon at δ 143 showed long range connectivity to the 19-methyl (δ 1.18), to H-4 at δ 4.12 and the olefinic proton at δ 5.67. The carbon at δ 128.5 showed long range connectivity to H-4 at δ 4.12.

The tertiary hydroxyl was assigned to position C-20 since the 21-methyl carbon showed a downfield shift to δ 26.4 in the ¹³C NMR spectrum. The γ -effect of this hydroxylation could be seen in the upfield shift of C-16 and C-23 signals compared to compound **2** [6]. The signal at δ 1.3 assigned to the C-21 methyl group indicated the *S*-configuration at C-20 [7]. Thus compound **3** was identified as ergosta-5,24(24')-diene-3 β , 4 β , 20*S*-triol.

EXPERIMENTAL

Leaves of *D. malabaricum* Bedd were extracted as reported earlier [1] and 94 g of the material from the MeOH wash of the hexane extract was chromatographed over a silica gel column using hexane and hexane–EtOAc mixtures as eluents. Frs 20–50 contained the three dammaranes reported earlier [1]. Frs (25 ml each) 51–71 (16 g) were chromatographed over silica gel using CHCl₃, and CHCl₃ with 1% MeOH as eluents.

Isolation of compound 1. Frs 27–28 on further purification and crystallization from EtOAc gave compound 1 (200 mg) mp 198–200°; $[\alpha]_D = +42.8^\circ$ (CHCl₃ C = 0.07) lit. $+43^\circ$ [2]; $[M+1]^+$ 461.

Isolation of compound **2**. Frs 35–40 on further purification by silica gel chromatography and recrystallization from EtOAc gave compound **2** (300 mg) mp 216° ; $[\alpha]_{\rm D} - 90^{\circ}$ (CHCl₃ C = 0.2) ¹H and ¹³C NMR values are comparable with the lit. data [4]. [M] ⁺ 414.

Isolation of compound 3. Frs 29–34 on further chromatography gave 3, recrystallized from EtOAc (150 mg); mp 198–200° [α]_D – 82° (CHCl₃ C = 1); IR $\nu_{\rm max}^{\rm CHCl_3}$ cm⁻¹ 3344, 1645; ¹H NMR and ¹³C NMR: See Tables 1 and 2; Mass: FAB-ms, [(M – H₂O) + 1] requires 413.341956, obs. 413.342393.

Acknowledgements—We wish to thank DBT, Govt of India, for funding a research project on bioactive natural products from the Meliaceae and the Rutaceae, and Dr Venkatasubramanian, Institute of Forest Ge-

netics and Breeding, Coimbatore, for collection and identification of the plant material. We thank IICT Hyderabad for HR-MS data, CDRI Lucknow for FAB mass data and Sophisticated Instrumentation Facility, IISc, Bangalore, for NMR data.

REFERENCES

- Govindachari, T. R., Suresh, G. and Krishna Kumari, G. N. (1994) Phytochemistry 37, 1127.
- Anjaneyulu, V., Harischandra Prasad, K., Ravi, K. and Connolly, J. D. (1985) *Phytochemistry* 24, 2359.
- 3. Greca, M. D., Fiorentino, A., Monaco, P. and

- Previtera, L. (1994) Phytochemistry 35, 1017.
- 4. Riccardis, F. D. and Minale, L. (1993) *J. Nat. Prod.* **56**, 282.
- 5 Majumder, P. L. and Pal, A. (1985) *Phytochemistry* **24**, 2120.
- Eliel, E. L., Bailey, W. F., Kopp, L. D., Willer, R. L., Grant, D. M., Bertrand, R., Christensen, K. A., Dalling, D. K., Duch, M. W., Wenkert, E., Shell, F. M. and Cochran, D. W. (1975) J. Am. Chem. Soc. 97, 322.
- Tchouankeu, J. C., Nyasse, B., Tsamo, E., Sondengam, B. L. and Morin, M. (1992) *Phytochemistry* 31, 704.