PII: S0031-9422(96)00465-7

C-p-HYDROXYBENZOYLGLYCOFLAVONES FROM CITRULLUS COLOCYNTHIS

GALAL T. MAATOOO, SALEH H. EL-SHARKAWY*, M. S. AFIFI and JACK P. N. ROSAZZA†

Dept. of Pharmacognosy, Faculty of Pharmacy, University of Mansoura, Mansoura 35516, Egypt; †Center for Biocatalysis and Bioprocessing, College of Pharmacy, University of Iowa, Iowa City, IA 52242, U.S.A.

(Received in revised form 30 April 1996)

Key Word Index—*Citrullus colocynthis*; Cucurbitaceae; *C*-linked flavone *C*-glucoside; *C*-p-hydroxybenzoylisoorientin; vitexin; isovitexin 4'-*O*-glucoside.

Abstract—In a flavonoid investigation of the fruits and aerial parts of *Citrullus colocynthis* six flavone *C*-glycosides were identified. The fruits contained isovitexin, iso-orientin and iso-orientin 3'-methyl ether, while the aerial parts contained three new *C-p*-hydroxybenzyl derivatives, viz. 8-*C-p*-hydroxybenzoylisovitexin, 6-*C-p*-hydroxybenzoylvitexin, and 8-*C-p*-hydroxybenzoylisovitexin 4'-*O*-glucoside. Their chemical identity was established by NMR spectroscopic methods including 2D-NMR, as well as UV and MS analyses. Copyright © 1996 Elsevier Science Ltd

INTRODUCTION

The fruits of *Citrullus colocynthis* Schrad (Cucurbitaceae) are well known for their medicinal properties [1]. Several cucurbitacins have been reported [2, 3] but there are no records of the flavonoid constituents of *C. colocynthis*. However, flavone *C*-glycosides have been isolated from other members of the Cucurbitaceae [4–6].

The present paper describes the isolation, purification and structure eludication of the glycoflavones of the fruits and aerial parts of *C. colocynthis*.

RESULTS AND DISCUSSION

The methanolic extract of powdered C. colocynthis fruits was purified by column chromatography (CC) on a Sephadex LH20 to give two fractions rich in flavonoids. Further purification afforded isoorientin 3'methyl ether (1), isoorientin (2), and isovitexin (3) [7]. The aerial parts were treated similarly on silica gel CC and further purification on preparative TLC resulted in three new flavone C-glycosides, viz. 8-C-p-hydroxybenzoylisovitexin (4), 6-C-p-hydroxybenzoylvitexin (5), and 8-C-p-hydroxybenzoylisovitexin $4'O-\beta-D$ glucoside (6). The identity of the isolated flavonoids was achieved using extensive UV, MS and NMR spectroscopic analyses. The complete ¹³C NMR data are given in Table I, and additionally confirmed by 2D-COSY, HETCOR, Selective INEPT experiments for the first time.

Isoorientin 3'-methyl ether (1) from the fruits

showed similar spectral data to isoorientin (2), [8] and its $[M]^+$ showed m/z 462 indicating the addition of a methyl group to 2. Addition of AlCl₃ and AlCl₃/HCl reagents to 1 gave bathochromic shifts of 53 nm (from 337 to 390 nm) [9]. The absence of the catechol at ring B was confirmed by the NaOAc/H₂BO₂ spectrum which gave no bathochromic shift at 337 nm band while a 55 nm bathochromic shift in band-I of NaOAc spectrum showed the absence of a free 4'-hydroxyl and the 5.5 nm bathochromic shift of band-II indicated the presence of a free 7-hydroxyl. This was supported by the presence of 336 nm shoulder in the NaOAc spectrum [10, 11]. The ¹H NMR of 1 showed a doublet at $\delta_{\rm H} 4.62$ (1H, J = 9.8 Hz, $H_{1'''}$) suggesting an anomeric proton of a β -linked sugar [4] and the presence of the methyl group was supported by $\delta_{\rm H}$ 3.9 singlet and δ_C 55.84 signals. The signal at δ_C 108.72 ppm was assigned to a C₆-linked to the sugar (normally between 96-98 ppm) and its connectivity was confirmed by a selective INEPT experiment where irradiation of the anomeric proton at $\delta_{\rm H}\,4.62$ enhanced the carbon signals at $\delta_{\rm C}$ 108.72 (C₆) and $\delta_{\rm C}$ (163.24 (C₇).

Compounds 2 and 3 were identified by comparison of their physical properties and spectral analyses with reported data [7, 8].

The EI-MS of 4, from the aerial parts, gave a molecular ion at m/z 538 for $C_{28}H_{26}O_{11}$. The ¹H NMR spectral data (Table 1) showed four doublets (each of 2 protons) in two aromatic AB systems, viz. δ_H 7.8 and 6.92 (J=7.5 Hz) corresponding to $H_{2',6'}$ and $H_{3',5'}$ of ring B, and δ_H 7.07 and 6.63 (J=7.8 Hz) corresponding to $H_{2'',6''}$ and $H_{3'',5'}$ of ring D. The ¹³C NMR data (Table 1) showed δ_C 127.99, 128.70, 115.81, and 114.77 shifts assigned to $C_{2',6''}$ and $C_{2'',6''}$ and $C_{3',5'}$,

^{*}Author to whom correspondence should be addressed.

Table 1. 13 C NMR data of isolated flavonoids (90.56 MHz, DMSO- d_6 , TMS as int. standard)*

С	1	2	3	4	5	6
2	163.32 s	163.48 s	163.71 s	162.91 s	163.00 s	162.80 s
3	103.03 d	102.88 d	102.85 d	103.20 d	102.13 d	103.45 d
4	181.85 s	181.85 s	182.07 s	181.46 s	181.72 s	182.12 s
5	160.48 s	160.61 s	160.82 s	157.25 s	157.13 s	157.25 s
6	108.72 s	108.87 s	108.87 s	107.90 s	106.95 s	107.73 s
7	163.24 s	163.03 s	163.97 s	160.97 s	160.80 s	160.76 s
8	93.64 d	93.45 d	94.00 d	106.87 s	108.10 s	106.76 s
9	156.21 s	156.06 s	156.46 s	153.86 s	152.07 s	153.69 s
10	103.29 s	103.36 s	103.43 s	103.20 s	107.10 s	103.56 s
1'	121.32 s	121.40 s	121,15 s	121.19 s	121.39 s	123.86 s
2'	109.99 d	113.23 d	128.54 d	127.99 d	127.87 d	127.90 d
3'	147.90 s	145.53 s	116.27 s	115.81 d	115.80 d	116.47 d
4'	150.59 s	149.54 s	161.52 s	160.94 s	160.80 s	160.08 s
5'	115.68 d	115.96 d	116.27 d	115.81 d	115.80 d	116.47 d
6'	120.23 d	18.93 d	128.54 d	127.99 d	127.87 d	127.90 d
1"	_	_	-	130.83 s	130.92 s	130.21 s
2",6"	_		_	128.70 d	128.77 d	128.87 d
3",5"	_		_	114.77 d	114.66 d	114.87 d
4"		_	_	155.07 s	152.07 s	155.16 s
CH2-bridge		_	_	26.90 t	27.02 t	26.77 t
1‴	72.98 d	72.96 d	73.33 d	74.26 d	74.38 d	74.03 d
2""	70.48 d	70.52 d	70.76 d	71.42 d	71.43 d	71.74 d
3‴	78.83 d	78.88 d	79.17 d	77.98 d	78.00 d	77.61 d
4‴	70.16 d	70.14 d	70.44 d	68.93 d	68.94 d	68.96 d
5‴	81.43 d	81.47 d	81.86 d	80.78 d	80.69 d	80.92 d
6‴	61.36 t	61.32 t	61.60 t	59.65 t	59.66 t	59.72 t
1""	_	_				99.64 d
2,""	_	_	_	_	_	72.86 d
3""	_		_	_	_	76.88 d
4""		_	_			69.41 d
5''''	_		_	_	_	76.29 d
6""		_		_	_	60.42 t
O-CH ₃	55.84 q	_	_	_	_	_

^{*}Multiplicities were determined by DEPT pulse sequence.

Compound	$\mathbf{R_1}$	R_2	R ₃	R ₄
1	glucose	н	ОМе	Н
2	glucose	Н	ОН	Н
3	glucose	н	н	Н
4	glucose	p-hydroxybenzyl	Н	Н
5	p-hydroxybenzyl	glucose	Н	Н
6	glucose	p-hydroxybenzyl	Н	glucose

 $C_{3'',5''}$, respectively. The two singlets at δ_H 6.71 and 4.02 were assigned to H₃ and CH₂-bridge protons and the $\delta_{\rm H}$ 4.79 (J = 7.5 Hz) doublet was assigned to the anomeric proton of the β -linked sugar [4]. DEPT experiment confirmed the resonance at $\delta_{\rm C}$ 26.90 and 59.65 for the CH_2 -benzyl and C_6 -sugar, respectively. The COSY-45° spectrum showed that the doublet at $\delta_{\rm H}$ 7.80 (H_{2'.6'}) was coupled to that at $\delta_{\rm H}$ 6.92 (H_{3'.5'}) forming an AB system in ring-B. The doublet at $\delta_{\rm H}$ 7.07 (H_{2",6"}) was also coupled to $\delta_{\rm H}$ 6.63 (H_{3",5"}) forming the second AB-system in the p-hydroxybenzyl moiety. The CH₂-bridge protons at $\delta_{\rm H}$ 4.02 was weakly coupled to the doublet at δ_{H} 7.07 $(H_{2^{n},6^{n}})$ which confirmed the presence of a p-hydroxybenzyl moiety. The selective INEPT experiment showed that, irradiation (7 Hz) of the CH₂-bridge proton signal at $\delta_{\rm H}$ 4.02 enhanced $\delta_{\rm C}$ 160.98 (C₇), 153.90 (C₉), 106.87 (C₉) and 103.20 (C_{10}) indicating the flavonoid- C_8 connection to the p-hydroxybenzyl moiety.

From the previous discussion, it can be concluded that the β -D-glucose is C-linked to the flavonoid skeleton at C_6 and 4 is 8-C-p-hydroxybenzoylisovitexin, which is isolated from this plant for the first time.

The ¹H, ¹³C NMR (Table 1), DEPT, HETCOR and COSY-45°, spectra of 5 are similar to those of 4. Compound 5 was identified as 6-*C*-*p*-hydroxybenzoylvitexin.

The mass spectrum of 6 showed a $[M]^+$ of M/Z 700 for C₃₄H₃₆O₁₆. Both ¹H and ¹³C NMR data (Table 1) displayed similar spectral patterns to 4; an extra doublet at $\delta_H 5.02$ (J = 7.2 Hz) was assigned to the anomeric proton of a β -linked sugar (H₁, [10]). The carbon spectrum showed 11 aliphatic hydroxy carbons between 59 and 81 ppm, six for the C-linked glucose (as in 4) and the remaining five signals coincided with chemical shifts for $O-\beta$ -D-glucose [10] and the sixth signal resonated at $\delta_{\rm C}$ 99.64 (C_{1"}). The COSY-45° experiment indicated that the doublets at $\delta_{\rm H}$ 7.95 (H_{2',6'}) and $\delta_{\rm H} 7.07 \ ({\rm H}_{2'',6''})$ were coupled to $\delta_{\rm H} 7.19 \ ({\rm H}_{3',5'})$, and $\delta_{\rm H}$ 6.64 (H_{3",5"}) doublets, respectively. The singlet at $\delta_{\rm H}$ 4.06 (CH₂ bridge) was weakly coupled to the $\delta_{\rm H}$ 7.07 doublet. A selective INEPT (9 Hz) irradiation of the $\delta_{\rm H}$ 4.06 singlet enhanced $\delta_{\rm C}$ 106.76 (C₈), 128.27 $(C_{2'',6''})$, 130.21 $(C_{1''})$ and 153.69 (C_9) indicating that the CH2-bridge of the p-hydroxybenzyl moiety is linked to the flavonoid skeleton at C₈. Irradiation (9 Hz) of $\delta_{\rm H}$ 4.81 (H₁") of the anomeric doublet of the C-linked sugar enhanced $\delta_{\rm C}$ 107.82 (C₆). Attempts to irradiate $\delta_{\rm H}$ 5.03 (H₁...) of the O-linked sugar was unsuccessful; however, a ROESY experiment demonstrated that this anomeric signal was coupled to a $\delta_{\rm H}$ 7.19 (H_{3'.5'}) doublet and suggested its location in close vicinity to H_{3',5'}. Thus, the O-linkage must be at C_4 and the singlet at δ_H 6.92 (H_3) was coupled to the doublets at δ_H 7.95 ($H_{2',6'}$), and δ_H 7.19 ($H_{3',5'}$). Acid and enzymic hydrolysis of 6 gave D-glucose (comparative TLC) and 4 (co-TLC, UV, MS). These results confirm the structure of 6 as 8-C-p-hydroxybenzoylisovitexin 4'-O- β -D-glucoside.

The new compounds **4–6** represent a new class of flavone *C*-glycosides, in which the *p*-hydroxybenzoic acid moeity is attached through a carbon atom to the flavonoid skeleton. Glycoflavones acylated with *p*-hydroxybenzoic acid through an oxygen atom to the *C*-sugar are already known from families other than Cucurbitaceae, e.g. 2"-*O*-*p*-hydroxybenzoylvitexin from *Vitex lucens* (Verbenaceae) [12] and 2"-*O*-*p*-hydroxybenzoyliso-orientin and its 4'-*O*-glucoside from *Gentiana asclepiadea* (Gentianaceae) [13].

EXPERIMENTAL

Plant material. Aerial parts and fruits of C. colocynthis Schrad were collected early October, 1989 during the flowering and fruiting stage from Gabel EI-Magharba, Sinai, Egypt. The plants were identified and authenticated by Professor I. Mashaly, of the Botany Department, University of Mansoura, Egypt, and a voucher specimen has been deposited at the Department of Pharmacognosy (# 12.10.89), University of Mansoura Herbarium.

Extraction and isolation. Powdered fruits (300 g) and aerial parts (600 g), of C. colocynthis were extracted with 70% MeOH (5 l). The concd extract was purified on an Amberlite Column (500 g), using H₂O and MeOH as eluants. The concd MeOH eluants gave 4.35 g and 10.1 g, respectively. The MeOH fruit extract was sepd by CC Sephadex LH 20 (Pharmacia) with 50% MeOH. Similar frs were pooled to afford 38 mg of 1, and 232 mg of a mixt. of two compounds which upon further purification on Rp-C18 CC and eluting with (MeOH-H₂O-HCOOH, 20:80:1) gave 52 mg of 2, and 78 mg of 3. The aerial parts extract was purified on silica gel CC (MeOH-CH2Cl2, 1:4). Collected frs were concd and further purified on prep. TLC on silica gel containing 10% ZnSO₄ using MeOH-EtOAc (9:1) to afford 25 mg of 4, 12 mg of 5, and 15 mg of 6, in addition to isovitexin.

Mps are uncorr. MS: Kratos MS-50 triple analyser using xenon as a carrier gas and 3-nitrobenzyl alcohol (3-NBA). HR-EI-MS: VG ZAB HF (70 eV). 1 H NMR 360 and 600 MHz, 13 C NMR 90.56 and 150 MHz, DMSO- d_6 . TMS as int. standard, chemical shifts (ppm) and J (Hz).

Compound 1. Isoorientin 3'-methyl ether. Yellow amorphous powder, mp 212–213°, UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm: 273 and 337; +MeONa: 260 sh, 278, 336 sh, 408; +AlCl₃: 262 sh, 280, 363, 390; +AlCl₃-HCl: 276, 352, 389; +NaOAc: 278, 319, 392; and +NaOAc-H₃BO₃: 274, 333. MS: m/z (rel. int.) 491 [M + 29]⁺ (3), 463 [M + 1]⁺ (36), 445 [M - H₂O]⁺ (26), 427 [M - 2H₂O]⁺ (1.7), 314 [M - 148]⁺ (3), and 313 [M - 149]⁺ (5), [165] (12), [151] (11), and [147] (31). ¹H NMR: δ_{H} 7.57 (d, 1H, J = 8.6 Hz, H₆·) 7.56 (s, 1H, H₂·), 6.96 (d, 1H, J = 8.6 Hz, H₅), 6.55 (s, 1H, H₃), 6.91 (s, 1H, H₈), 4.62 (d, 1H, J = 9.7 Hz, H₁···), and 3.90 (s, 3H, OCH₃). ¹³C NMR (Table 1).

Compound 4. 8-C-p-Hydroxybenzoylisovitexin. Yellow needles, mp 232–235°. UV $\lambda_{\max}^{\text{MeOH}}$ nm: 277, 327;

+MeONa: 286, 335, 404; +AlCl₃: 283, 310, 354, 399; +AlCl₃/HCl: 284, 309, 350, 388 sh; +NaOAc: 285, 305 sh, 394; and +NaOAc-H₂BO₂: 278, 323 sh, 360 sh. MS: m/z (rel. int.) 512 $[M + 1-H_2O]^+$ (1.5), and 121 $[C_7H_5O_2]$ (100); FAB-MS (3-NBA) m/z 561 [M + Na], and 539 $[M + 1]^+$ HR-FAB-MS: m/z 539. 1544 $[M+H]^+$, calculated for $C_{28}H_{27}C_{11}$, 539.1545. ¹H NMR: $\delta_{\rm H}$ 7.80 (d, 2H, J = 7.50 Hz, $H_{2',6'}$), 7.07 (d, 2H, J = 7.8 Hz, $H_{2'',6''}$), 6.92 (d, 2H, J = 7.50 Hz, $H_{3'.5'}$), 6.63 (d, 1H, J = 7.70 Hz, $H_{3''.5''}$), 6.71 (s, 1H, H_3), 4.79 (d, 1H, J = 7.50 Hz, $H_{1''}$), and 4.02 (s, 2H, CH_2 -bridge), HETCOR demonstrated that $\delta_H 4.02$ (CH₂) is correlated to $\delta_{\rm C}$ 26.90, $\delta_{\rm H}$ 3.60 (H_{6"}) to $\delta_{\rm C} \, 59.65 \ ({\rm C_{6'''}}), \ \delta_{\rm H} \, 3.45 \ ({\rm H_{2'''}}) \ {\rm to} \ \delta_{\rm C} \, 71.42 \ ({\rm C_{2'''}}),$ $\delta_{\rm H}\,4.79~(H_{1'''})$ to $\delta_{\rm C}\,74.26~(C_{1'''}),~\delta_{\rm H}\,3.30~(H_{3'''})$ to $\delta_{\rm C}$ 77.90 (C_{3"}), $\delta_{\rm H}$ 3.20 (H_{5"}) to $\delta_{\rm C}$ 80.78 (C_{5"}), $\delta_{\rm H} 6.71 \ ({\rm H}_3)$ to $\delta_{\rm C} 103.20 \ ({\rm C}_3), \ \delta_{\rm H} 6.63 \ ({\rm H}_{3'', 5''})$ to $\delta_{\rm C}$ 114.77 (C_{3",5"}), $\delta_{\rm H}$ 6.92 (H_{3',5'}) to $\delta_{\rm C}$ 115.81 $(C_{3',5'})$, $\delta_H 7.80 (H_{2',6'})$ to $\delta_C 127.99 (C_{2',6'})$, and $\delta_{\rm H}$ 7.07 $({\rm H_{2'',6''}})$ to $\delta_{\rm C}$ 128.70 $({\rm C_{2'',6''}})$. $^{13}{\rm C~NMR}$ (Table

Compound 5. 6-*C*-*p*-Hydroxybenzoylvitexin. Amorphous powder, mp 242–243°, UV spectral data were identical to 4. FAB-MS. m/z 539 [M + 1]⁺ and 561 [M + Na]⁺, and HR-FAB-MS: m/z [M]⁺ 538.1544 (calc. $C_{28}H_{26}O_{11}$, 538.1545). H NMR: $\delta_{\rm H}$ 7.77 (*d*, 2H, J=7.30 Hz, $H_{2",6"}$), 7.07 (*d*, 2H, J=7.0 Hz, $H_{2",6"}$), 6.90 (*d*, 2H, J=7.30 Hz, $H_{3",5"}$), 6.61 (*d*, 1H, J=7.70 Hz, $H_{3",5"}$), 6.62 (*s*, 1H, H_3), 4.75 (*d*, 1H, J=9.20 Hz, $H_{1"}$), and 3.98 (*s*, 2H, CH₂-bridge), DEPT, HETCOR and COSY-45° spectra are similar to those of 4. ¹³C NMR (Table 1).

Compound 6. 8-C-p-Hydroxybenzoylisovitexin 4'-O-β-D-glucoside. Yellow needles, mp 224–224°. UV $\lambda_{\rm max}^{\rm MeOH}$ nm: 279, 322; +MeONa: 289, 333, 393; +AlCl₃: 267, 288, 344, 378 sh; +AlCl₃–HCl: 265, 287, 343, 372, +NaOAc: 284, 301 sh, 280 sh; +NaOAc-H₃BO₃: 278, 326 sh. MS (rel. int.) m/z 683 [M – H₂O + 1] + (0.3), and 520 [M – O – glc – H₂O] + (0.6) indicating [M] + of 700. HR-FAB-MS, m/z 701.2082, 100% (calcd 701.2070 for C₃₄H₃₆O₁₆ + 1). H NMR: $\delta_{\rm H}$ 7.95 (d, 2H, J + 6.80 Hz, H_{2'.6'}), 7.19

(d, 2H, J = 6.80, $H_{3'.5'}$), 7.07 (d, 2H, J = 7.70 Hz, $H_{2",6"}$), 6.92 (s, 1H, H_3), 6.64 (d, 1H, J = 7.90 Hz, $H_{3".5"}$), 5.03 (d, 1H, J = 7.20 Hz, $H_{1"}$) 4.81 (d, 1H, J = 9.70 Hz, $H_{1"}$), and 4.06 (s, 2H, CH₂-bridge), DEPT, HETCOR and COSY-45° spectra are identical to those of **4.** ¹³C NMR (Table 1).

Acknowledgement—The authors thank Mr J. Snyder of the University of Iowa for technical assistance.

REFERENCES

- 1. *The National Formulary* (1949) The British Medicinal Association, The Pharmaceutical Society of Great Britain, p. 73.
- Faust, R. E., Cwalina, G. E. and Ramsted, E. J. (1958) J. Pharm. Assoc. 47, 1.
- 3. Lavie, D., Willner, D., Belkin, W. and Harely, W. G. (1959) Acta Unio. Intr. Contra. Cancrum 15, 177.
- 4. Monties, B., Bouilant, M. and Chopin, J. (1976) *Phytochemistry* **15**, 1053.
- 5. Itokawa, H., Oshida, Y., Ikuta, A., Inatomi, H. and Ikegami, S. (1981) *Phytochemistry* **20**, 2421.
- 6. Bauer, R., Berganza, L. H., Selingmann, O. and Wagner, H. (1985) *Phytochemistry* 24, 1587.
- 7. Wagner, H., Horhammer, L. and Kiraly, C. (1970) *Phytochemistry* **9**, 897.
- 8. Harborne, J. B. and Mabry, T. J. (1982) in *The Flavonoids: Advances in Research*. University Press, Cambridge, p. 19.
- Markham, K. R. and Mabry, T. J. (1968) Phytochemistry 7, 1197.
- Mabry, T. J., Markham, K. R. and Thomas, M. B. (1970) in *The Systematic Identification of Flavo-noids*, Springer, New York, p. 41.
- 11. Harborne, J. B., Mabry, T. J. and Mabry, H. (1975) The Flavonoids, Vol. I. Academic Press, London.
- Horouitz, R. M. and Gentili, B. (1966) Chem. Ind. 625.
- Goetz, M. and Jacot-Guillarmod, A. (1978) Helv. Chim. Acta 61, 1343.