PII: S0031-9422(96)00418-9

# DANIELONE, A PHYTOALEXIN FROM PAPAYA FRUIT

FERNANDO ECHEVERRI,\* FERNANDO TORRES, WINSTON QUIÑONES, GLORIA CARDONA, ROSENDO ARCHBOLD, JAVIER ROLDAN, IVAN BRITO,† JAVIER G. LUIS‡ and EL-HASSANE LAHLOU‡

Universidad de Antioquia, Departamento de Química, A. A. 1226, Medellin, Colombia; †Universidad de Antofagasta, Facultad de Ciencias Básicas, Casilla 170, Antofagasta Chile; ‡Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, Carretera La Esperanza 2, La Laguna, 38206, Tenerife, Canary Islands, Spain

(Received 15 April 1996)

**Key Word Index**—Carica papaya; Caricaceae; Colletotrichum gloesporioides; phytoalexin induction; acetophenone; antimicrobial activity.

**Abstract**—A new phytoalexin was induced and isolated from papaya fruit slices treated with copper salts; its structure was established as 3',5'-dimethoxy-4'-hydroxy-(2-hydroxy)acetophenone. This compound showed high antifungal activity against *Colletotrichum gloesporioides*, a pathogenic fungus of papaya. Copyright © 1996 Elsevier Science Ltd

#### INTRODUCTION

Phytoalexins are antimicrobial compounds produced by plants when they are exposed to microorganisms [1]; however, the same type of compounds are isolated when plants are challenged to abiotic conditions, such as UV radiation, freezing or heavy-metal (mainly copper) salts [2, 3]. Papaya (Carica papaya) is an edible fruit that is very susceptible to the fungal pathogen Colletotrichum gloesporioides, which causes rapid rotting 1-2 days after infection. This fungus is also pathogenic to tomato tree fruit and causes the disease known as anthracnosis. We have isolated other classes of phytoalexins from this plant [4, 5]. This paper describes the induction and the characterization of a new phytoalexin, named danielone 1, from papaya fruit. This compound has a high antifungal activity against Colletotrichum.

## RESULTS AND DISCUSSION

Danielone (1) was isolated as a powder; the high-resolution EI-mass spectrum showed the [M]<sup>+</sup> at m/z 212.20, in agreement with a molecular formula  $C_{10}H_{12}O_5$ . The presence of hydroxyl, cationic carbonyl and an aromatic ring was indicated by the IR absorptions at 3450, 1670, 820, 840 and 780 cm<sup>-1</sup>. The <sup>1</sup>H NMR spectrum (Table 1) shows two singlets at  $\delta$  3.95 (6 H) and  $\delta$  7.19 (2 H) ppm, that were attributed to methoxyl groups and aromatic protons, respectively; compound 1 also displayed two signals at  $\delta$  6.14 and 3.57 ppm interchangeable with  $D_2O$  addition. The latter was coupled with a doublet at  $\delta$  4.83 ppm, as deduced

The structure of danielone (1) was deduced using a combination of HMQC and HMBC experiments. For instance, the carbonyl group displayed  $^3J$  correlation with H-6' and H-2' protons ( $\delta$  7.19 in  $^1H$  NMR and 147.08 ppm in  $^{13}C$  NMR) and  $^2J$  correlation with protons of a methylene group at  $\delta$  4.83 (Fig. 1), while H-2' and C-6' are mutually coupled through long-range correlation and both signals showed  $^2J$  correlation with a quaternary at 124.79 ppm (C-1') and with a quaternary and oxygenated carbon at 140.74 ppm (C-4'). Other important couplings are depicted in Fig. 1. However, the relative position of the two methoxyl groups and the hydroxyl group was established only by means of X-ray diffraction analysis of its 2,4'-diacetate derivative (Fig. 2). Danielone (1) inhibited the germination of spores of *C. gloesporioides* at concentrations

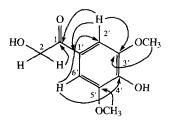



Fig. 1. Structure of danielone (1) and correlations obtained with a HMBC experiment.

from a  $^{1}\text{H}-^{1}\text{H}$  COSY experiment. In the  $^{13}\text{C}$  NMR spectrum the occurrence of a carbonyl function was supported by the resonance at  $\delta$  196.65 and the DEPT experiment displayed four quaternary carbons, one methine, one methylene, and one methyl group. The possibility of a symmetric molecule was obvious to satisfy the formula obtained from high resolution EI-mass spectrometry.

<sup>\*</sup>Author to whom correspondence should be addressed.

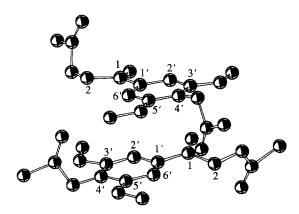



Fig. 2. ORTEP view of danielone.

of approximately 50-75 ppm. Several acetophenones have been reported as phytoalexins or constitutive antifungal agents from species of the Rosaceae [6].

#### EXPERIMENTAL

General. MS (HR): VG-Micromass ZAB-2F at 70 eV; MS (LR): HP5995 at 70 eV. The  $^{1}$ H and  $^{13}$ C spectra were obtained on a Bruker AMX400 (100 MHz) and WP200SY (50 MHz), using CDCl<sub>3</sub> and TMS as standard int. ref. The chemical shift values are reported in ppm ( $\delta$ ) units and the coupling constants (J) are in Hz. Standard pulse sequences were used for COSY, DEPT, HMQC and HMBC experiments. TLC was developed on precoated silica gel G-25 (Merck); CC on Kieselgel 60 (70–230 mesh, Merck). Visualization of the TLC plates was achieved with oleum spray reagent.

Isolation and detection. Papaya fruit (35 kg) were peeled, cut in 1.5-cm thick slices and soaked for 48 hr in CuCl<sub>2</sub> or CuSO<sub>4</sub> soln (0.1 M) with Tween 20 (0.5%). Slices were then ground in 201 of EtOH (95%)

Table 1. <sup>1</sup>H and <sup>13</sup>C NMR data for 1\* (in CDCl<sub>2</sub>)

| Position | 'Н                   | <sup>13</sup> C | HMBC       |
|----------|----------------------|-----------------|------------|
| 1        |                      | 196.65 s        | 7.19, 4.83 |
| 2        | 4.83, d, J = 1.9  Hz | 64.95 t         |            |
| 1'       |                      | 124.79 s        | 7.19, 4.83 |
| 2'       | 7.19 s               | 104.98 d        | 7.19       |
| 3'       |                      | 147.08 s        | 3.96, 7.19 |
| 4'       |                      | 140.74 s        | 7.19       |
| 5'       |                      | 147.08 s        | 3.96, 7.19 |
| 6'       | 7.19 s               | 104.98 d        | 7.19       |
| 3'-OCH3  | 3.95 s               | 56.54 q         |            |
| 5'-OCH3  | 3.95 s               | 56.54 g         |            |
| 2-OH     | 6.14 s               | •               |            |
| 4'-OH    | 3.14, $J = 1.9$ Hz   |                 |            |

<sup>\*</sup>Assignments were made with <sup>1</sup>H-<sup>1</sup>H COSY, DEPT and HMQC.

in a blender, centrifuged and filtered through cheese-cloth. The filtrate was concentrated *in vacuo* to give a dark-brown gum (1.4 g) which was re-extracted with *n*-hexane,  $\mathrm{CH_2Cl_2}$  and  $\mathrm{EtOAc}$ . Sterile  $\mathrm{H_2O/Tween}$  was used as a control treatment. Compound 1 was detected only in the  $\mathrm{EtOAc}$  extracts from fruit treated with  $\mathrm{CuCl_2}$  or  $\mathrm{CuSO_4}$ , by comparison of their composition on TLC using  $\mathrm{CHCl_3-Me_2CO}$  (9:1). Danielone (50 mg) was purified from dark gum by CC in the fr. eluted with *n*-hexane- $\mathrm{CH_2Cl_2}$  (9:1). Danielone: amorphous solid, mp 145°, UV  $\lambda_{\max}^{\mathrm{MeOH}}$  227, 298 nm. MS: 70 eV,  $\mathrm{[M]}^+$ , 212.20,  $\mathrm{C_{10}H_{12}O_5}$  (22%), 181  $\mathrm{[M-OCH3]}^+$  (100%), 153(12), 123(10), 95(8), 67(13).

X-ray crystallographic analysis of  $C_{14}H_{16}O_7$ , triclinic, space group P1 a=11.153(16), b=12.944(15), c=12.707(15)Å, V=1491.2(12)Å<sup>3</sup> and z=4. Data were measured in a Siemens AED4 diffractometer with Cu-K $\alpha$  radiation graphite monochromator) using  $\omega:\theta$  scans. The structure was solved by direct methods using the SHELXS-86 program. Anisotropic temperature factors were used for the refinement of the non-H atoms. The final discrepancy index was R=0.013. The crystallographic data have been deposited at the Cambridge Crystallographic Centre.

Antimicrobial assay. Colletotrichum gloesporioides was originally obtained from diseased fruits of *C. papaya*. Compound **1** was tested as ethanolic solutions (5%) to 50, 75 and 100 ppm and antifungal activity was established by counting the germination of spores at days 3, 8 and 15 after inoculation. Each compound was tested in triplicate and a control experiment containing only solvents was conducted.

Acknowledgements—This work was supported by grants from COLCIENCIAS (1115-05-119-94) and Universidad de Antioquia.

### REFERENCES

- 1. Harborne, J. B. (1993) Nat. Prod. Rep. 10, 327.
- Osman, S. F. and Fett, W. (1983) Phytochemistry 22, 1921.
- Dewick, P. M. and Steele, H. J. (1982) Phytochemistry 21, 1599.
- Echeverri, F., Cardona, G., Gallego, H., López, J., Torres, F. (1988) Spectrosc. Int. J. 6, 151.
- Echeverri, F., Torres, F., Quiñones, W., Cardona, G., Archbold, R. and Duque, M. (1996) in Activity of chromenes against C. gloesporioides. "Phytochemistry of Fruits and Vegetables", Proceedings of The International Symposium Phytochemical Society of Europe, Murcia (Spain), 19-23 September 1995.
- Kokubun, T., Harborne, J. B. and Eagles, J. (1994) *Phytochemistry* 35, 331.