

PII: S0031-9422(96)00600-0

IRIDOID GLUCOSIDES FROM VIBURNUM RHYTIDOPHYLLUM

LAMBERTO TOMASSINI, DEJAN BRKIC,* SEBASTIANO FODDAI and MARCELLO NICOLETTI

Dipartimento di Biologia Vegetale, Università degli Studi 'La Sapienza', P. le A. Moro 5, I-00185, Rome, Italy; *Institute for Medicinal Plant Research 'Dr Josif Pancic', Tadeusa Koscuska 1, 11000 Belgrade, Yugoslavia

(Received in revised form 12 August 1996)

Key Word Index—*Viburnum rhytidophyllum*; Caprifoliaceae; iridoid glucosides; 7,10,2′-triacetylpatrinoside; 7-*p*-coumarylpatrinoside; 10-acetylpatrinoside.

Abstract—Three new *Valeriana*-type iridoid glucosides, 7,10,2'-triacetylpatrinoside; 7-p-coumarylpatrinoside and 10-acetylpatrinoside, have been isolated, together with decapetaloside, from the stem bark of *Viburnum rhytidophyllum*. The structures have been elucidated mainly by spectroscopic means. Copyright © 1997 Elsevier Science Ltd

INTRODUCTION

A number of iridoid glycosides characterized, for the most part, by a sugar moiety at C-11 and an isovaleroyl group at C-1 (*Valeriana*-type iridoids) have been isolated from various *Viburnum* species [1-3]. The present study reports on the isolation and chemical characterization of four iridoid glucosides, three of them of novel structure, from *Viburnum rhytidophyllum* Hemsl., an evergreen shrub of oriental origin, introduced in Yugoslavia as a decorative species [4].

RESULTS AND DISCUSSION

After a preliminary fractionation of the alcoholic extract (see Experimental), two glycoside containing fractions were obtained. CC separation of the EtOAc fraction afforded pure 1 and 2, while 3 and 4 were obtained as pure compounds by CC from the *n*-BuOH fraction. Among the four isolated compounds, 1-3 proved to be new compounds.

Compounds 1–3, as evident from the 1 H and 13 C NMR data and in accordance with *Valeriana*-type iridoid glucosides, contained a β -D-glucopyransyl moiety bound to C-11 and an esterifying isovaleryl group at C-1. In particular, the base structure of patrinoside [1] was indicated for all three products, with small spectroscopic differences directly related to the acylation effects. The 1 H NMR of compound 1 ($C_{27}H_{40}O_{14}$) showed, besides the presence of three acetyl groups (δ 2.02s, 2.04s and 2.09s), a significant low field shift of the signals for H-7, H-2' and H-10 (δ 5.26, 4.70 and 4.22, respectively) clearly due to a triple acetylation. All of the data, confirmed by the 13 C

1 R=R'=R''=Ac

2 R = p-coumaryl; R' = R'' = H

3 R = R'' = H; R' = Ac

752 Short Reports

Table 1. ¹³C NMR spectral data of compounds 1-3 (CD₃OD)*

(CD3OD)			
C	1	2	3
1	92.7	92.7	93.4
3	140.6	140.3	140.1
4	116.2	115.6	116.4
5	34.1	33.7	34.1
6	38.1	37.9	40.8
7	75.7	76.0	72.4
8	43.4	47.5	46.4
9	44.0	43.5	43.3
10	63.8	61.5	64.8
11	69.2	69.4	69.6
Glucose unit			
1'	100.7	103.1	103.3
2′	75.3	74.9	75.1
3′	76.1	77.7	77.9
4′	71.7	71.5	71.7
5'	78.1	77.9	78.1
6'	62.6	62.6	62.2
Acetyl group			
CH ₃	20.7, 20.9		20.8
	21.1		
COO-	171.6, 172.0		172.9
	172.5		
p-Coumaryl group			
1"		127.2	
2", 6"		131.0	
3", 5"		116.6	
4"		161.1	
α		115.1	
β		146.4	
COO-		168.7	

^{*}All the compounds had additional signals arising from the isovaleryl group at ca 173.0, 43.5, 26.0 and 22.5.

NMR spectrum, allowed us to assign to 1 the structure of 7,10,2'-triacetylpatrinoside.

In the ¹H NMR spectrum of compound 2 ($C_{30}H_{40}O_{13}$), in which in comparison to the patrinoside spectrum only the H-7 resonance was shifted to lower field (δ 5.39), the typical signals of a *trans-p*-coumaryl were observed, together with the absence of acetyl groups. A comparable low field shift of C-7 in the ¹³C NMR spectrum (Table 1), confirmed for 2 the structure of 7-*p*-coumarylpatrinoside.

Finally, the ¹H spectrum of compound 3 ($C_{23}H_{36}O_{12}$), corresponded to that of patrinoside, except for an acetyl group linked to position 10 (acylation shift of H_2 -10 to δ 4.21). Thus compound 3 was assigned the structure of 10-acetylpatrinoside.

The stereochemical assignments in compounds 1, 2 and 3, for the chiral centres at C-7 and C-8, also consistent with the configuration of patrinoside, were confirmed by NOE-difference NMR experiments, whereas unambiguous confirmation of the acylation

sites assignment was obtained by ¹H₋¹³C COLOC experiments.

The fourth compound 4 was identified as decapetaloside, an iridoid glucoside already isolated from other *Viburnum* species, by comparing its NMR spectra with those reported in the literature [1, 2].

EXPERIMENTAL

 1 H NMR: 500 MHz (the CHD₂OD peak is assigned to δ 3.30); 13 C NMR: 125 MHz (the CD₃OD peak is assigned to 49.0 ppm).

Extraction and isolation. Fresh plant material (150 g of stem bark) was collected in the Botanical Garden of Belgrade and exhaustively extracted with MeOH. The extract was concd to dryness. The residue was diluted with H₂O and re-extracted with EtOAc followed by *n*-BuOH. The EtOAc extract, on CC on silica gel with MeOH-CHCl₃ (1:9), afforded pure 1 (10 mg) and 2 (9 mg), while the *n*-BuOH extract, on CC on silica gel with MeOH-CHCl₃ (1:4), gave pure 3 (18 mg) and 4 (24 mg).

7,10,2'-Triacetylpatrinoside (1). Powder, $[\alpha]_D^{20} =$ -19.5 (MeOH; c 0.5); ¹H NMR (CD₃OD): δ 0.96 $(6H, d, J = 6.6 \text{ Hz}, \text{Me}_2\text{CHCH}_{2-}), 1.96 (1H, ddd,$ J = 5.1, 7.3, 13.0 Hz, H-6a), 2.02 (3H, s, Ac), 2.04(3H, s, Ac), 2.07 (1H, ddd, J = 3.4, 7.3, 13.0 Hz, H-6b), 2.09 (3H, s, Ac), 2.16 (1H, m, Me₂CHCH₂), 2.25 (1H, m, H-8), 2.25 (2H, d, J = 7.8 Hz, Me₂CHCH₂),2.34 (1H, dt, J = 1.3 and 5.2 Hz, H-9), 2.90 (1H, m, H-5), 3.31 (1H, m, H-5'), 3.32 (1H, t, J = 9.0 Hz, H-4'), 3.51 (1H, t, J = 9.0, H-3'), 3.68 (1H, dd, J = 5.3and 12.0 Hz, H-6'a), 3.84 (1H, dd, J = 2.0 and 12.0 Hz, H-6'b), 4.08 (1H, d, J = 11.6 Hz, H-11a), 4.22 $(2H, bs, H_2-10), 4.24 (1H, d, J = 11.6 Hz, H-11b), 4.46$ (1H, d, J = 7.8 Hz, H-1'), 4.70 (1H, dd, J = 7.8 and)9.0 Hz, H-2'), 5.26 (1H, m, H-7), 5.96 (1H, d, J = 5.2Hz, H-1), 6.37 (1H, bs, H-3).

7-p-Coumarylpatrinoside **(2)**. Powder, = -36.9 (MeOH; c 0.5); UV λ_{max} nm (log ε): 310 (4.1), 298 (sh. 3.8), 226 (2.9); ¹H NMR (CD₃OD): δ 0.95 (6H, d, J = 6.6 Hz, Me_2 CHCH₂₋), 2.05-2.20 (3H, m, H₂-6 and Me₂CHCH₂-), 2.24 (2H, d, J = 7.8 Hz, Me_2CHCH_{2-}), 2.26 (1H, m, H-8), 2.28 (1H, dd, J = 4.5and 8.2 Hz, H-9), 3.07 (1H, m, H-5), 3.20 (1H, dd, J = 7.8 and 9.0 Hz, H-2'), 3.27 (1H, m, H-5'), 3.34 (1H, t, J = 9.0 Hz, H-4'), 3.40 (1H, t, J = 9.0, H-3'),3.67 (2H, m, H-10a and H-6'a), 3.70 (1H, dd, J = 7.9and 11.3 Hz, H-10b), 3.86 (1H, dd, J = 2.0 and 12.0 Hz, H-6'b), 4.09 (1H, d, J = 11.6 Hz, H-11a), 4.28 (1H, d, J = 11.6 Hz, H-11b), 4.30 (1H, d, J = 7.8 Hz,H-1'), 5.39 (1H, m, H-7), 6.06 (1H, d, J = 4.5 Hz, H-1), 6.33 (1H, d, J = 16.3 Hz, H- α), 6.41 (1H, bs, H-3), 6.81 (2H, d, J = 8.5 Hz, H-3" and H-5"), 7.47 (2H, d, $J = 8.5 \text{ Hz}, \text{H-2}^{"} \text{ and H-6}^{"}), 7.61 (1\text{H}, d, J = 16.3 \text{ Hz},$ $H-\beta$).

10-Acetylpatrinoside (3). Powder, $[\alpha]_D^{20} = -51.6$ (MeOH; c 0.8); ¹H NMR (CD₃OD): δ 0.97 (6H, d,

Short Reports 753

J=6.6 Hz, $\underline{\text{Me}_2\text{CHCH}_{2-}}$, 1.83 (1H, ddd, J=4.7, 8.1 and 13.0 Hz, H-6a), 1.98–2.05 (2H, m, H-6b and $\underline{\text{Me}_2\text{CHCH}_{2-}}$), 2.04 (3H, s, Ac), 2.15 (3H, m, H-6b, H-8 and H-9), 2.21 (2H, d, J=7.8 Hz, $\underline{\text{Me}_2\text{CH}\underline{\text{CH}}_{2-}}$), 3.03 (1H, m, H-5), 3.20 (1H, dd, J=7.7 and $\overline{\text{9.0}}$ Hz, H-2'), 3.24–3.33 (3H, m, H-5', H-4' and H-3'), 3.66 (1H, dd, J=5.3 and 11.6 Hz, H-6'a), 3.86 (1H, dd, J=11.3 Hz, H-11a), 4.21–4.30 (5H, m, H₂-10, H-11b, H-7 and H-1'), 5.89 (1H, d, J=5.2 Hz, H-1), 6.38 (1H, ds, H-3).

REFERENCES

- 1. El-Naggar, L. J. and Beal, J. L., Journal of Natural Products, 1990, 43, 649.
- 2. Boros, C. A. and Stermitz, F. R., Journal of Natural Products, 1990, 53, 1055.
- 3. Boros, C. A. and Stermitz, F. R., Journal of Natural Products, 1991, 54, 1173.
- 4. Vukicevic, E., in *Flora Sr Srbije*, Vol. V, ed. M. Josifovic. Belgrade, p. 501, 1973.