PII: S0031-9422(96)00661-9

A DAMMARANE GLYCOSIDE FROM KOREAN RED GINSENG

Jae-Ha Ryu,* Jae-Hyun Park, Jin-Hee Eun, Jee-Hyung Jung† and Dong Hwan Sohn*

College of Pharmacy, Sookmyung Women's University, Seoul 140-742, Korea; † Korea Ocean Research and Development Institute, Ansan 425-600, Korea; ‡ College of Pharmacy and Medicinal Resources Research Center, Wonkwang University, Iksan City, Cheonbuk 570-749, Korea

(Received in revised form 29 August 1996)

Key Word Index—Panax ginseng; Araliaceae; ginsenoside Rg₆; saponin.

Abstract—A new dammarane glycoside, named ginsenoside Rg_6 , was isolated from the Korean red ginseng (*Panax ginseng*). Its chemical structure was established to be 3β , 6α , 12β -trihydroxydammar-20 (21),24-diene-6-O- α -L-rhamnopyranosyl- $(1 \rightarrow 2)$ - β -D-glucopyranoside based on spectral analysis. Copyright © 1997 Elsevier Science Ltd

INTRODUCTION

In recent years, several new saponin constituents have been reported from the Korean ginseng [1, 2]. The anti-tumour activity of the ginsenoside Rh family of compounds has been extensively studied [3]. In a previous paper [4], we reported the isolation of a new saponin, (20E)-ginsenoside F_4 from the Korean red ginseng. In this paper, we report the isolation and structure elucidation of a new dammarane glycoside from the Korean red ginseng. This is the first report on a ginseng saponin with a double bond at C-20 (21).

RESULTS AND DISCUSSION

The NMR spectra of 1 showed typical signals of the triol type ginsenosides, and their patterns are very similar to those of ginsenoside F_4 [2]. Saponin 1 showed a $[M + Na]^+$ peak at m/z 789 in the FAB-

1

mass spectrum (molecular formula, C₄₂H₇₀O₁₂), which corresponds to the dehydrated structure of ginsenoside Rg₂ (molecular formula, C₄₂H₇₂O₁₃) such as ginsenoside F₄ (2). But the prominent difference from ginsenoside F4 was found in the chemical shift of the olefinic carbons. Generally, double bonds of the ginsenosides were found at C-20 (22) and C-24 (25) in the side chain. The chemical shift values of C-20 and C-22 were dependent on the configuration of the double bond [5]. From the 13 C NMR data of 1, one double bond was identified at C-24 (25), but the other olefinic carbons (δ 108.1, δ 155.5) cannot be assigned for C-20 and C-22 of ginsenoside F_4 (2). A methyl carbon signal corresponding to C-21 was not found in the ¹³C NMR spectrum of 1. The spectral pattern showed that compound 1 had a second double bond at the C-20 (21) position that might be formed by the dehydration of the C-20 hydroxyl group of ginsenoside Rg₂. One methylene carbon peak at δ 108.1 was correlated with

2

two *exo*-methylene protons at δ 5.17 and 4.95 in 1 H- 13 C COSY and these two protons correlated together in 1 H- 1 H COSY. The quaternary olefinic carbon at

^{*} Author to whom correspondence should be addressed.

932 J.-H. Ryu et al.

 δ 155.5 was assigned to C-20 and the chemical shift value was compatible with those of the other compounds having a similar side chain. The chemical shifts of C-20 in elabunin [6] and cycloeuphordenol [7] were reported as δ 149.8 and 156.0, respectively. The proton peak at $\delta 2.82$ (H-9) was correlated with two protons at $\delta 1.48$ and 2.10 (H₂-11) in the ¹H-¹H COSY spectrum, and with carbon at δ 48.23 (C-9) in $^{1}H_{-}^{13}C$ COSY, respectively. The proton at $\delta 3.97$ (m, H-12) showed correlation with H-11 and $\delta 2.10$ (H-13) in ${}^{1}H-{}^{1}H$ COSY, and the peak at $\delta 2.10$ correlated with a carbon at δ 52.2 (C-13) in ${}^{1}H-{}^{13}C$ COSY. From the correlations of protons at δ 2.40 with δ 5.35 and 2.01 in ${}^{1}H-{}^{1}H$ COSY, H-22 (δ 2.01), H-23 (δ 2.40) and H-24 (δ 5.35) were identified. Other NMR signals were assigned based on the spectral analysis and comparison with those of ginsenoside F_4 (2) [2]. The NMR spectral data of 1 matched with the structure of Δ^{20} (21)-ginsenoside Rg₂. This is the first report of a ginseng saponin with an exo-methylenic double bond at C-20 (21), and the saponin 1 has been named as ginsenoside Rg₆.

EXPERIMENTAL

The ¹H and ¹³C NMR spectra were measured by Varian Unity 500 in pyridine- d_5 and chemical shifts were expressed in δ from TMS as int. standard.

The powder of Korean red ginseng (1 kg) prepared from six-year-old fresh ginseng (Panax ginseng C. A. Meyer) was extracted with MeOH (1.1×3) with reflux. The MeOH extract (145 g) was partitioned between Et₂O and H₂O to remove a lipid soluble fr. The H₂O layer was partitioned again with EtOAc and n-BuOH sequentially. The EtOAc soluble fraction (19 g) was applied to a silica gel column with CH₂Cl₂-MeOH $(7:1\rightarrow 5:1\rightarrow 3:1)$ as eluent to yield a subfr. containing 1 (2.3 g). It was further purified by HPLC using MeCN-H₂O (51:49) on a reverse phase column to yield 1 (16 mg) as an amorphous powder, mp 173-176°C; $[\alpha]_D^{23} - 9.48$ (MeOH: c = 0.28). IR $v_{\text{max}}^{\text{KBr}} \text{cm}^{-1}$: 3 400 (OH), 1 640 (C=C), 875 (=CH₂). Positive FAB-MS m/z: 789 [M + Na]⁺. ¹H NMR (500 MHz, pyridine- d_5): $\delta 1.86$ (3H, d, J = 6.2 Hz, H-6 of Rha), 2.82 (1H, m, H-9), 3.55 (1H, m, H-3), 3.97 (1H, m, H-12), 4.05 (1H, m, H-3) of Glc), 4.27 (1H, t, J = 9.0 Hz, H-4 of Glc), 4.76 (2H, m, H-3 of)Rha and H-6), 4.82 (1H, brs, H-2 of Rha), 4.95 and 5.17 (1H each, s, H-21), 5.33 (1H, d, J = 6.7 Hz, H-1 of Glc), 5.35 (1H, t, J = 6.5 Hz, H-24), 6.56 (1H, s, H-1 of Rha); 13 C NMR (125 MHz, pyridine- d_5): see Table 1.

Acknowledgement—This work was partially supported by the 1996 grants from Medicinal Resources Research Center.

Table 1. ¹³C NMR chemical shifts of ginsenoside Rg₆ (1) and ginsenoside F₄ (2)*

ginsenoside F ₄ (2)*		
C	1†	2‡
1	39.6	39.5
2	27.8	27.8
3	78.3	78.4
4	40.0	40.1
5	60.9	60.9
6	74.5	74.4
7	46.2	46.2
8	41.4	41.4
9	48.2	50.1
10	39.7	40.0
11	32.7	32.2
12	72.3	70.3
13	52.2	50.7
14	51.2	50.9
15	32.6	32.6
16	27.1	27.1
17	50.3	52.0
18	17.8	17.7
19	17.7	17.8
20	155.5	140.1
21	108.1	27.5
22	33.8	123.5
23	30.7	30.0
24	125.4	125.4
25	131.3	131.3
26	25.8	25.8
27	17.6	17.6
28	32.2	32.6
29	16.9	17.0
30	17.2	17.2
30	17.2	17.2
Sugar moieties		
Glc 1	101.9	101.8
2	79.4	79.5
3	78.4	78.4
4	72.7	72.6
5	78.7	78.4
6	63.2	63.2
Rha 1	101.9	102.0
2	72.4	72.3
3	72.4	72.4
4	74.2	74.2
5	69.5	69.5
6	18.7	18.8

^{*}All spectra were recorded in pyridine- d_5 , chemical shift in ppm relative to internal TMS.

REFERENCES

- Kim, D.-S., Chang, Y.-J., Zedk. U., Zhao, P., Liu, Y.-Q. and Yang, C.-R., *Phytochemistry*, 1995, 40, 1493.
- Zhang, S., Takeda, T., Zhu, T., Chen, Y., Yao, X., Tanaka, O. and Ogihara, Y., *Planta Medica*, 1990, 56, 298.
- 3. Baek, N. I., Kim, D. S., Lee, Y. H., Park, J. D.,

[†] The spectra were recorded at 125 MHz.

[†] Data from ref. [2].

- Lee, C. B. and Kim, S. I., *Planta Medica*, 1996, **52**, 86
- Ryu, J.-H., Park, J.-H., Kim, D. H., Sohn, T. H., Kim, J. M. and Park, J. H., Arch. Pharm. Res., 1996, 19, 335.
- 5. Kim, D. S., Baek, N. I., Park, J. D., Lee, Y. H.,
- Jeong, S. Y., Lee, C. B. and Kim, S. I., Yakhak Hoeji, 1995, 39, 85.
- 6. Kubo, I. and Fukuhara, K., Journal of Natural Products, 1990, 53, 968.
- 7. Khan, A. Q., Rasheed, T., Kazmi, S. N., Ahmed, Z. and Malik, A., *Phytochemistry*, 1988, **27**, 2279.