PII: S0031-9422(96)00660-7

TRITERPENOID GLYCOSIDES FROM ADINA RUBELLA

GAO-JUN FAN and ZHI-SHENG HE*

Shanghai Institute of Materia Medica, Academia Sinica, Shanghai 200031, People's Republic of China

(Received in revised form 22 August 1996)

Key Word Index—Adina rubella; Rubiaceae; quinovic acid glycosides; triterpenoids.

Abstract—From the roots of Adina rubella, four new quinovic acid glycosides, quinovic acid $3-O-\beta$ -D-glucopyranosyl($1\rightarrow 4$)- β -D-fucopyranosyl-($28\rightarrow 1$)- β -D-glucopyranosyl ester, quinovic acid $3-O-\beta$ -D-glucopyranosyl($1\rightarrow 4$)- α -L-rhamnopyranosyl-($28\rightarrow 1$)- β -D-glucopyranosyl ester and quinovic acid $3-O-\beta$ -D-glucopyranosyl($1\rightarrow 2$)- β -D-glucopyranosyl-($28\rightarrow 1$)- β -D-glucopyranosyl ester, were isolated. Their structures were elucidated on the basis of hydrolytic and spectral methods. Copyright © 1997 Elsevier Science Ltd

INTRODUCTION

Adina rubella Hance, a Chinese folk medicinal plant, has been shown to contain an extensive series of triterpenoid saponins [1–3]. Our further investigation of the roots led to the isolation of four new triterpenoid glycosides, quinovic acid 3-O- β -D-glucopyranosyl(1 \rightarrow 4)- β -D-fucopyranoside (1), quinovic acid 3-O- β -D-glucopyranosyl(1 \rightarrow 4)- β -D-fucopyranosyl-(28 \rightarrow 1)- β -D-glucopyranosyl ester (2), quinovic acid 3-O- β -D-glucopyranosyl ester (3), quinovic acid 3-O- β -D-glucopyranosyl(1 \rightarrow 2)- β -D-glucopyranosyl-(28 \rightarrow 1)- β -D-glycopyranosyl ester (4). This paper describes the isolation and structure elucidation of compounds 1–4.

RESULTS AND DISCUSSION

The compounds 1–4 were obtained as powders. Their structures were determined by FAB-mass spectrometry, 1 H and 13 C NMR spectroscopy and sugar analysis. On acid hydrolysis, 1 and 2 afforded D-glucose and D-fucose, respectively, 3 afforded D-glucose and α -rhamnose; 4 yielded D-glucose only identified by PC comparison with authentic samples.

The FAB-mass spectrum of 1 showed peaks at m/z 817 $[M+Na]^+$ and 795 $[M+1]^+$, and fragment ions at m/z 617 $[(M+1)-178]^+$, resulting from the cleavage of a glucose unit with the glycosidic oxygen, and a fragment at m/z 487 $[(M+1)-162-146]^+$, resulting

from the loss of a glucose and a fucose unit without the glycosidic oxygens.

The FAB-mass spectrum of 2 showed molecular peaks at m/z 979 [M+Na]⁺ and 975 [M+1]⁺ shifting 162 mass units relative to 1 and fragments at m/z 795 [(M+1)-162]⁺ and 779 [(M+1)-178]⁺, suggesting the presence of an extra glucose moiety with respect to 1. The ion peaks at m/z 633 [(M+1)-2×162]⁺ and 617 [(M+1)-162-178]⁺ showed clearly the further loss of a glucose unit while a fucose remained attached to the aglycone. The fragment at m/z 487 [(M+1)-2×162-146]⁺ corresponded to the subsequent loss of a fucose unit.

Compound 4, in its FAB-mass spectrum gave molecular ions at m/z 995 [M+Na]⁺ and 973 [M+1]⁺ and a fragment ion at m/z 811 [(M+1)-162]⁺, showing the loss of a glucose unit without the glycosidic oxygen; a fragment at m/z 649 [(M+1)-2×162]⁺, showing the subsequent loss of a glucose unit that was confirmed by the fragments at m/z 605 [(M+1-44)-2×162]⁺ and 589 [(M+1-44)-162-178]⁺, suggesting the facile loss of a carboxyl group and the loss of a glucose unit with or without the glycosidic oxygen. Starting from the peak m/z 649, the loss of the third glucose unit led to the peak at m/z 487 [(M+1)-3×162]⁺.

The FAB-mass spectrum of 3 showed the same fragments pattern observed in 2 and indicated that 3 was isomeric to 2. The molecular formulae $C_{42}H_{66}O_{14}$ for 1, $C_{48}H_{76}O_{19}$ for 2 and 3, $C_{48}H_{76}O_{20}$ for 4, and the aglycone formula $C_{30}H_{46}O_5$ were deduced by the FAB mass spectrum (Table 1) and ¹³C NMR DEPT spectrum.

Analysis of ¹³C and ¹H NMR data (Tables 2 and 3,

^{*} Author to whom correspondence should be addressed.

Compound	R	R'	R"
1 1a	H Ac	RO RO OR RO O I'	Н
2 2a	H Ac	OR	RO OR OR OR
3 3a	H Ac	RO RO OR I'' RO OR	RO OR OR
4		Ho Ho O I'	Ho OH OH

Table 1. FAB-mass spectral data for compounds 1-4

m/z	1	m/z	2 and 3	m/z	4
817	[M + Na]+	979	[M+Na]+	995	$[M+Na]^+$
795	$[M+1]^{+}$	957	$[M+1]^{+}$	973	$[M+1]^+$
617	$[(M+1)-178]^+$	817	$[(M + Na) - 162]^+$	951	$[(M + Na) - 44]^+$
487	$[(M+1)-162-146]^+$	795	$[(M+1)-162]^{+}$	811	$[(M+1)-162]^+$
		779	$[(M+1)-178]^+$	789	$[(M + Na - 44) - 162]^+$
		633	$[(M+1)-2\times 162]^+$	773	$[(M + Na - 44) - 178]^+$
		617	$[(M+1)-162-178]^+$	649	$[(M+1)-2\times 162]^+$
		487	$[(M+1)-2\times 162-146]^+$	605	$[(M+1-44)-2\times162]^+$
				589	$[(M+1-44)-162-178]^{+}$
				487	$[(M+1)-3\times162]^+$

Table 2. ¹³C NMR spectral data for the aglycones of compounds 1-4

C	1	2	3	4	*	DEPT
1	39.1	38.9	39.1	39.2	39.4	CH ₂
2	26.9	26.6	26.5	26.9	26.5	CH_2
3	88.7	88.4	88.4	89.0	78.1	CH
4	39.5	40.0	39.3	39.6	39.4	C
5	56.1	55.7	55.7	56.3	55.9	CH
6	18.8	18.4	18.9	18.8	19.0	CH_2
7	37.7	37.3	37.2	37.7	37.7	CH_2
8	40.2	40.0	40.4	40.3	40.2	C
9	47.4	47.1	47.4	47.3	47.4	CH
10	37.2	36.8	37.2	36.7	37.5	C
11	23.5	23.2	23.7	23.6	23.5	CH_2
12	129.2	129.4	129.7	129.5	129.1	CH
13	134.3	133.1	133.6	133.7	134.2	C
14	57.0	56.6	57.0	57.1	56.9	C
15	26.5	26.0	26.2	26.4	28.3	CH ₂
16	25.7	25.4	25.8	25.8	25.6	CH ₂
17	48.9	48.8	49.2	49.2	48.9	C
18	55.1	54.5	54.9	54.9	55.1	CH
19	39.3	39.3	39.3	39.3	39.5	CH
20	37.9	37.3	37.7	37.8	37.8	CH
21	30.8	30.1	30.4	30.5	30.7	CH_2
22	37.2	36.3	36.7	37.1	37.2	CH_2
23	28.2	27.8	28.3	28.2	28.7	Me
24	17.2	16.9	17.0	17.1	16.8	Me
25	16.7	16.5	16.8	16.8	16.8	Me
26	19.1	19.1	19.4	19.4	18.4	Me
27	178.2	177.9	178.4	178.5	178.2	C
28	180.3	176.3	176.8	<u>176.7</u>	180.2	C
29	18.4	18.0	18.6	18.4	19.1	Me
30	21.4	21.1	21.5	21.4	21.7	Me

^{*} Literature data of quinovic acid from [4].

respectively) suggested the identity of the aglycone moiety as quinovic acid. A comparison of the 13 C NMR spectrum of 1–4 with the literature data of quinovic acid [4] revealed that the glycosidation site of 1 was C-3 ($\Delta^{\delta} = 10.6$ ppm), and the sites of glycosidation of 2–4 were C-3 and C-28.

The ¹H NMR spectrum of compound 1 displayed a proton anomeric signal at $\delta 5.26$ (d, J = 7.8 Hz), and its attached carbon signal was located at δ 107.1 in the ¹³C NMR spectrum. Another proton anomeric signal of a fucose was overlapped. Thus the peracetylation of 1 was carried out leading to 1a. The two proton anomeric signals were revealed at $\delta 4.40$ (d, J = 7.9Hz) and 4.50 (d, J = 7.9 Hz). The J values of the anomeric protons indicated that the sugar moieties had a β -configuration. The position of attachment of the sugar chain to the aglycone was revealed by the NOESY correlations of 1a between H-1' (δ 4.40) and H-3 (δ 3.00), H-1" (δ 4.50) and H-4' (δ 3.82), as 3-O- β -D-glucopyranosyl(1 \rightarrow 4)- β -D-fucopyranoside. Thus, saponin 1 was concluded to be quinovic acid 3-O-β-D-glucopyranosyl($1 \rightarrow 4$)- β -D-fucopyranoside.

Basic hydrolysis of 2 yielded 1 identified by TLC. The ¹H and ¹³C NMR spectrum displayed three anomeric signals at $\delta 4.63$ (overlap), 5.25 (d, J = 7.8 Hz), 6.44 (d, J = 8.0 Hz) and $\delta 106.8$, 106.8, 95.5, respectively. The anomeric signals of one glucose appearing at $\delta 6.44$ (J = 8.0 Hz) in its ¹H NMR spectrum and δ95.5 in the ¹³C NMR spectrum indicated that the glucose moiety gave a β -configuration and was attached to the 28-carboxyl group of the aglycone. Since the anomeric proton signal of fucose was overlapped, 2a was obtained by peracetylating 2. The NOESY cross peaks of 2a between H-1' (δ 4.52) and H-3 (δ 2.95), H-1" (δ 5.02) and H-4' (δ 4.13), revealed that the sugar moiety attachments were 3-O-β-D-glucopyranosyl($1 \rightarrow 4$)- β -D-fucopyranosyl. Therefore, saponin 2 was identified as quinovic acid $3-O-\beta$ -Dglucopyranosyl(1 \rightarrow 4)- β -D-fucopyranosyl-(28 \rightarrow 1)- β -D-glucopyranosyl ester.

Basic hydrolysis of 3 yielded quinovic acid 3-O- β -D-glucopyranosyl(1 \rightarrow 4)- α -L-rhamnopyranoside (5) [2] identified by TLC. Three anomeric signals of saponin 3 were shown at δ 5.11 (s), suggesting the sugar had an α -configuration, 5.23 (d, J = 7.7 Hz), 6.40 (d, J = 8.0 Hz) in its ¹H NMR and δ 104.0, 107.0, 95.5 in the ¹³C NMR spectrum, respectively. The upfield

Table 3. ¹H NMR spectral data of compounds 1-4

Н	1	2	3	4
Н-3	3.33 dd (4.2, 11.6)	3.25 dd (4.2, 11.5)	2.97 dd (4.2, 11.5)	3.10 dd (4.2, 11.5)
H-12	6.10 s	6.05 s	5.98 s	5.95 s
H-18	2.90 d (11.1)	2.77 d (11.3)	2.69 d (13.8)	2.67 d (11.0)
Me-23	1.19 s	1.22 s	0.69 s	1. 09 s
Me-24	1. 00 s	1.04 s	0.90 s	1. 04 s
Me-25	0.97 s	1.00 s	0.71 s	0.86 s
Me-26	1.25 s	1.32 s	1.25 s	1. 20 s
Me-29	1.30 d (5.8)	1.25 d(6.0)	1.15 d (6.0)	1.18 d (5.5)
Me-30	0.90 d(6.1)	0.85 d(6.5)	$0.70 \ br, \ s$	0.75 d(5.7)
H-1'	4.60 overlap	4.63 overlap	5.11 s	4.74 d (7.4)
H-1"	5.26 d (7.8)	5.25 d (7.8)	5.23 d (7.7)	5.30 d (7.5)
H-1‴		6.44 d(8.0)	6.40 d (8.0)	6.36 d(7.9)
Me-6'	1.70 d(6.0)	1.70 d(5.9)	1.70 d(5.9)	

shift of one glucose anomeric signal (C-1", δ 95.5 in ¹³C NMR) indicated the esterifying unit of C-28 aglycone. Compared with methyl- α -L-rhamnopyranoside [5], the C-4' signal of the rhamnose unit was shifted to lowfield. Thus, another glucose unit was linked to the 4'-hydroxy of the rhamnose. All these attachments were confirmed by the NOESY correlations of 3 and 3a between H-1' and H-3, H-1" and H-4'. The structure of 3 was quinovic acid 3-O- β -D-glucopyranosyl($1 \rightarrow 4$)- α -L-rhamnopyranosyl-($28 \rightarrow 1$)- β -D-glucopyranosyl ester.

In the ¹H NMR spectrum of saponin 4, three proton anomeric signals of glucose were displayed at $\delta 4.74$ (d, J = 7.4 Hz), 5.30 (d, J = 7.5 Hz), 6.36 (d, J = 7.9 Hz). Comparison of the ¹³C NMR signals of the three glucose units, showed an upfield shift of C-1" (δ 95.8), corresponding to the ester-linked anomeric carbon; and a downfield shift of C-2' (at δ 83.5), suggesting the glycosidation site of its glucose unit. The above conclusion was confirmed by the NOESY cross peaks between H-1' (δ 4.74) and H-3 (δ 3.10), H-1" (δ 5.30) and H-2' (δ 4.15). Therefore, saponin 4 was elucidated to be quinovic acid 3-O- β -D-glucopyranosyl($1 \rightarrow 2$)- β -D-glucopyranosyl ester.

EXPERIMENTAL

General. Mps are uncorr. The NMR, NOESY spectra of 1-4 were recorded on a Bruker AM-400 spectrometer, all with TMS as internal standard and pyridine- d_5 as solvent. The FAB-MS were obtained using glycerol as matrix on a MAT-95 double focusing mass spectrometer.

Plant materials. The roots of A. rubella were collected in Jiang-su, China and authenticated by vice-Professor Huang Xu-lan. A voucher specimen is deposited at Shanghai Institute of Materia Medica.

Extraction and isolation. The air-dried roots (5.0 kg) were extracted with EtOH and 228 g of extract was obtained, which was partitioned with petrol, Et₂O, CHCl₃, EtOAc and *n*-BuOH successively from a MeOH-H₂O soln. The *n*-BuOH fr. (92 g) was chromatographed on a silica gel column using EtOAc-MeOH as eluent. The frs, eluted with EtOAc-MeOH (9:1, fr. A) and EtOAc-MeOH (3:1, fr. B), were further chromatographed on a silica gel column with CHCl₃-MeOH-H₂O (300:100:10) and on an ODS column with MeOH-H₂O (3:2) to obtain from fr. A compounds 1 (52 mg), 2 (273 mg) and 3 (40 mg) and from fr. B compound 4 (34 mg).

Compounds 1, 2 and 3 were acetylated as usual with Ac_2O -pyridine to give 1a, 2a and 3a, respectively.

Compound 1. Powder, mp 230–232°; $[\alpha]_D^{27} + 18.44^\circ$ (MeOH; c 0.003253). IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3400 (br), 2940, 1730, 1690, 1074. FAB-MS: see Table 1. 1 H and 13 C NMR: see Tables 2–4.

Compound 1a. ¹H NMR: H-1' (δ 4.40, d, J = 7.9 Hz), H-4' (δ 3.82, d, J = 2.6 Hz), H-1" (δ 4.50, d, J = 7.9 Hz), H-3 (δ 3.00, dd, J = 4.2, 11.8 Hz).

Table 4. ¹³C NMR spectral data of the sugar moieties for compounds 1-4

C	1	2	3	4	DEPT		
3-O-fuc	3- <i>O</i> -rha 3- <i>O</i> -glc						
1'	107.1	106.8	104.0	105.1	CH		
2'	73.5	73.2	72.9	83.5	CH		
3′	75.8	75.4	72.1	79.4	CH		
4′	83.2	83.2	85.5	71.8	CH		
5'	70.5	70.1	68.3	78.3	CH		
6′	17.8	17.5	18.4	63.0^{a}	CH ₃ /CH ₂		
3- <i>O</i> -glc							
1"	107.1	106.8	107.0	106.1	CH		
2"	76.0	74.0	74.4	77.2	CH		
3"	78.8	79.1	79.5	79.1	CH		
4"	71.7	71.3	71.7	71.8	CH		
5"	78.8	78.4	78.8	78.0	CH		
6"	63.0	62.6	62.9ª	62.9a	CH_2		
28- <i>O</i> -glu					-		
1‴		95.5	95.9	95.8	CH		
2""		76.0	76.7	74.3	CH		
3‴		78.7	79.1	78.5	CH		
4‴		71.0	71.4	71.4	CH		
5‴		78.4	78.7	78.0	CH		
6‴		62.1	62.6ª	62.6ª	CH_2		

^a Assignments may be interchanged in each column.

Compound 2. Powder, mp 225–230°; $[\alpha]_D^{20} + 32.61^\circ$ (MeOH; c 0.006900). IR $v_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3396, 2927, 1697, 1456, 1227, 1072. FAB-MS: see Table 1. ¹H and ¹³C NMR: see Tables 2–4.

Compound **2a**. ¹H NMR: H-1' (δ 4.52, d, J = 7.9 Hz), H-3' (δ 5.33, dd, J = 2.5, 10.8 Hz), H-4' (δ 4.13, d, J = 2.1 Hz), H-1" (δ 5.02, d, J = 7.9 Hz), H-1" (δ 6.32, d, J = 8.1 Hz), H-3 (δ 2.95, dd, J = 4.2, 11.8 Hz).

Compound 3. Powder, mp 232–235°; $[\alpha]_D^{24} + 6.280^\circ$ (MeOH; c 0.003917). IR $v_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3419, 2927, 1699, 1456, 1389, 1070. FAB-MS: see Table 1. ¹H and ¹³C NMR: see Tables 2–4.

Compound **3a**. ¹H NMR: H-1' (δ 5.10, s), H-1" (δ 5.45, d, J = 7.9 Hz), H-1" (δ 6.40, d, J = 8.1 Hz), H-3 (δ 3.05, dd, J = 4.2, 11.5 Hz).

Compound 4. Powder, mp 206–209°; $[\alpha]_D^{24} + 21.88^\circ$ (MeOH; c 0.006400). IR ν_{max}^{RBr} cm⁻¹: 3400, 2900, 1726, 1550, 1454, 1225, 1074. FAB-MS: see Table 1. ¹H and ¹³C NMR: see Tables 2–4.

Acid hydrolysis of 1-4. Compounds 1-4 (5 mg of each) were submitted to acid hydrolysis in the usual manner [6]. The sugars were identified by comparison with authentic samples of L-rhamnose, D-glucose and D-fucose by PC.

Basic hydrolysis of 2 and 3. Compounds 2 and 3 (5 mg, respectively) were submitted to alkaline hydrolysis in the usual manner [6]. Compound 2 yielded 1, and compound 3 gave 5 [2] identified by TLC.

REFERENCES

- 1. Fang, S. Y., He, Z. S., Fan, G. J., Wu, H. M. and Xu, J. F., *Journal of Natural Products*, 1996, **59**, 304.
- 2. Fang, S. Y., He, Z. S., Gao, J. H. and Wang, P., *Phytochemistry*, 1995, **39**, 1241.
- 3. He, Z. S., Fang, S. Y. and Xu, C. F., *Zhongcaoyao*, 1995, **5**, 285.
- 4. Rumero-Sanchez, A. and Vazquen, P., Phytochemistry, 1991, 30, 623.
- Breitmaier, E. and Voelter W., ¹³C-NMR Spectroscopy Methods and Application in Organic Chemistry, 1978, 5, 247.
- 6. Lamidi, M., Ollivier, E., Faure, R., Debrauwer, L., Nze-Ekekang, L. and Balansard, G., *Phytochemistry*, 1995, **38**, 209.