PII: S0031-9422(96)00599-7

SESQUITERPENE ARYL ESTERS FROM ARMILLARIA TABESCENS

DERVILLA M. X. DONNELLY,* TENJI KONISHI, OLIVE DUNNE and PEADAR CREMIN

Department of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland

(Received 29 July 1996)

Key Word Index—Armillaria tabescens; Basidiomycete; sesquiterpene aryl esters; melleolides.

Abstract—Five new sesquiterpene aryl esters based on the $\Delta^{2.3}$ -protoilludane skeleton were isolated from *Armillaria tabescens* grown in culture. These were characterized as 4-dehydro-14-hydroxydihydromelleolide, 4-dehydro-dihydromelleolide, 14-hydroxydihydromelleolide, 13-hydroxy-4-methoxymelleolide and 5β , 10α -dihydroxy-1-orsellinate-dihydromelleolide. The structures of these compounds was established by collective NMR techniques. Copyright © 1997 Elsevier Science Ltd

INTRODUCTION

The pathogenic basidiomycete Armillaria causes root disease in softwood and hardwood plantations, orchards, horticultural crops, amenity planting, ornamental shrubs and herbaceous plants [1]. Some 20 species are recognised worldwide with virulence varying between species and within strains of the same species [2]. A series of biologically active protoilludane sesquiterpene aryl esters have been isolated from different strains of the fungus. These comprise two major structural types, represented by armillyl orsellinate (1) [3] and melleolide (2) [4]. As part of an ongoing investigation of strains from different species of this basidiomycete, we have isolated 12 sesquiterpene aryl esters from cultures of a N. American isolate of the species A. tabescens (Scop.: Fr.) Emel. The N. American strains of this species are similar in morphology but are intersterile and of greater pathogenicity than their European counterparts. This has led to the proposal of a distinct species, A. monadelpha for the N. American A. tabescens [1].

RESULTS AND DISCUSSION

Fractionation of a chloroform-methanol-water extract of the mycelium of an *A. tabescens* CBS 137.32 culture by a combination of gel chromatography on Sephadex LH-20 (MeOH) and column chromatography on silica gel afforded three new (3–5) and seven previously known (1–2, 6–10) sesquiterpene arylesters

The molecular formula of 3, $C_{23}H_{30}O_6$, was established by elemental analysis and EIMS. The base peak

1

at m/z 151 in the EIMS spectrum was indicative of the orsellinate ester. The IR spectrum of 3 showed a chelated ester carbonyl band at 1646 cm⁻¹ and a hydroxyl band at 3431 cm⁻¹. The ¹H NMR spectrum indicated one aromatic methyl at δ 2.40, and two *meta* coupled aromatic protons at δ 6.26 and 6.25. This in conjunction with ¹³C NMR data (Table 1) for the presence of an ester carbonyl atom (δ 172.03) and a tetrasubstituted benzene ring confirmed the presence of the orsellinate ester [5].

The structure of the sesquiterpenoid moiety was established using collective NMR techniques. The ¹H NMR spectrum showed signals due to two aliphatic

^{*} Author to whom correspondence should be addressed.

methyl groups (δ 1.04, 1.29). The appearance of a singlet at δ 3.31 (2H) indicated that one of the two germinal methyl groups (CH₃-14, -15) of 3 had undergone hydroxylation. Signals due to an allylic primary alcohol (δ 3.85, 3.77, $2 \times d$, H-1A and H-1B) and a vinylic proton at δ 5.67 were evident. A resonance at δ 2.90 (s, 1H, H-4) indicated that hydroxyl substitution at C-4 was absent in 3 relative to melleolide (2). The germinally coupled doublets (2H, δ 1.74, 1.64, $2 \times dd$, J = 13.5, 1.4 Hz) were consistent with a methylene group at C-12 coupled to adjacent proton at C-13. Irradiation at H-5 (δ 5.78, dd, J = 8.2, 15.7 Hz) in decoupling experiments collapsed the doublets of H- 6α and H-6 β (δ 2.18 and 2.17) to give simple doublets (J = 8.0 Hz). This irradiation also collapsed the doublet at δ 2.90 (H-4) to a singlet. Analysis at 500 MHz led to the resolution of the H-10 methylene protons $(1.20, dd, J = 12.3 \text{ Hz}, \text{ H-}10\beta \text{ and } 1.27, d, J = 12.3$ Hz, H- 10α). NOE difference experiments (Table 2) established the relative configuration of 3 which was in agreement with that previously reported for these compounds [6]. Irradiation of the methylene at δ 3.25 gave an NOE enhancement to H-12α and H-10α indicating the α positioning of this group at C-11.

The ¹³C NMR spectrum was in agreement with that of melleolide (2) with two olefinic carbons (δ 128.8, 135.8, s, C-3 and C-2, respectively), but with an alcohol function at C-1 (δ 65.8, t, -CH₂OH), a methine carbon at C-4 (δ 37.8, d) and a triplet resonance at δ 72.38

(C-14). The downfield shift experienced by C-14 and C-11 ($\Delta \delta$ 40.78, α effect and $\Delta \delta$ 6.26, β effect, respectively) and the upfield shifts of C-10 and C-15 are in agreement with a C-14 hydroxy substituent. The structure of 3 was thereby concluded to be 4-dehydro-14-hydroxydihydromelleolide.

12

The molecular formula of 4, C₂₃H₃₀O₄, was determined by CI mass spectrometry and supported by elemental analysis. The ¹H and ¹³C NMR data of 4 were practically identical to that recorded for 3 except for the presence of three aliphatic methyl groups (δ 0.99, 1.00 and 1.25) in the 'H NMR rather than two. Signals for four methyl groups at δ 24.03 (q, C-8'), 26.9 (q, C-8), 32.18 (q, C-14) and 32.25 (q, C-15) were evident in the ¹³C NMR spectrum and this established that 4 lacked the hydroxylation at C-14 present in 3. The sesquiterpenoid moiety as determined by ¹H-¹H COSY, NOE difference and decoupling experiments was otherwise found to be identical to 3, and 4 was therefore concluded to be 4-dehydodihydromelleolide.

Compound 5 proved to be a crystalline solid whose molecular formula, $C_{24}O_{30}O_7$, was established by mass spectrometry. The CIMS base peak at m/z 151, the carbonyl resonance in the IR spectrum (1651 cm⁻¹, chelated ester) and comparison of spectral parameters

Table 1. ¹³C NMR spectral data for compounds 3–5 and 11– 12

			12		
С	3*	4†	5*	11‡	12‡
1	65.8 t	66.3 t	193.6 d	64.5 t	67.0 t
2	135.8 s	133.5 s	133.7 s	135.6 t	130.7 s
3	128.8 d	130.0 d	153.5 d	132.6 t	139.9 d
4	43.9 d	43.1 d	81.7 s	77.7 s	76.9 s
5	71.1 d	70.6 d	72.6 d	77.0 d	74.2 d
6	37.8 t	38.6 t	32.9 t	33.7 t	36.4 <i>t</i>
7	33.4 s	32.7 s	36.2 s	39.7 s	35.5 s
8	24.3 q	26.9 q	20.8 q	22.1 q	21.9 q1
9	45.7 d	45.4 d	50.5 d	44.8 d	47.5 d
10	39.2 t	41.8 t	44.9 t	37.6 t	82.4 d
11	44.2 s	37.7 s	39.8 s	44.5 s	43.2 s
12	43.6 t	47.9 t	58.1 t	43.5 t	45.5 t
13	39.7 d	39.2 d	77.3 s	39.8 d	36.0 d
14	72.4 t	32.3 q	29.8 q	72.4 t	24.4 q
15	27.4 q	32.2 q	30.9 q	27.1 q	29.1 q
1′	172.0 d	171.1 s	171.3 s	172.0 s	172.5 s
2′	105.2 s	105.2 s	105.3 s	105.5 s	105.4 s
3′	166.5 s	165.2 s	166.5 s	166.1 s	166.0 s
4′	101.6 d	101.3 d	101.7 d	101.6 d	101.4 d
5′	163.3 s	160.9 s	163.9 s	163.7 s	162.8 s
6′	112.4 d	111.6 d	112.3 d	112.5 d	112.0 d
7′	144.8 s	144.0 s	144.3 s	144.6 s	144.5 s
8′	27.7 q	24.0 q	24.6 s	24.3 q	24.8 q
4-C- OCH	3	_	54.3 q		_

^{*} CD_3COCD_3 ; † $CDCl_3$; † $CD_3COCD_3 + CD_3OD$.

with 3 and 4 indicated another orsellinate sesquiterpenoid. ¹H NMR signals at δ 9.59 (CHO) and 7.04 (d, J=1.1, H-3) showed the presence of an α,β unsaturated aldehyde group. Also signals at δ 4.60, 9.15 and 11.58 which disappeared upon addition of D₂O indicated hydroxyl substitution. The appearance of H-9 as a double doublet at δ 2.43 (J=7.0, 13.0 Hz) split by the H-10 protons and of H-12 α as a doublet

Table 2. Connectivities established by NOE difference experiments for compounds 3–5

Proton irradiated	3	4	5
H-3	-	H-1 (3.1)	H-1 (9.59),
		Η-12α (4.6)	$H-12\alpha$ (1.89)
		H ₃ -14 (3.6)	
H-9	-	H-13 (6.0)	H-10β (1.72)
		H-1 (4.8)	
		H-3 (4.8)	
H ₃ -8	H-5 (3.70)	H-5 (2.5)	H-5 (5.81),
	, ,	H-4 (2.5)	H-6α (2.49)
		Η-6α (2.5)	4-OMe (3.25)
H ₃ -14	Η-12α (1.42)	H-3 (0.5)	Η-12α (1.89)
	Η-10α (1.98)	$H-12\alpha$ (1.2)	H-15 (1.18)
	H ₃ -15 (2.53)		H-8' (2.27)
H ₃ -15	H-12 β (5.2)	H-9 (1.5),	H-12β (2.03)
	H ₃ -15 (1.38)	H-12 β (1.6)	
	. ,	H-3 (1.0)	
H ₃ -8'	H-4′,	_	H-4' (6.21)
-	H-6' (6.92)		H-6' (6.21)

(d 1.89, J = 14.0 Hz) and H-12 β as a double doublet (J = 2, 14.0 Hz), indicated hydroxyl substitution at C-13. The presence of methoxy substitution at position 4 was deduced from comparison of the ¹H and ¹³C NMR data of 4 with those of 4-methoxymelleolide [7]. NOE difference experiments showed connectivities between CH₃-8 and OCH₃-4, H-5, and H-6 α . This, in addition to the absence of a correlation between CH₃-8 and H-9, indicated that the 4-methoxy group was in the α position with the aromatic ester *trans* to CH₃-8 and *cis* to H-9. Compound 5 was thereby established as 13-hydroxy-4-methoxymelleolide.

Five other protoilludane sesquiterpene aryl esters were isolated from the mycelial extract of this basidiomycete. Analysis of their spectral data led to their identification as armillyl orsellinate (1) [3], melleolide (2) [4], 4-methoxymelleolide (6) [7], 4-dehydromelleolide (7) [8], dihydromelleolide (8) [9] and 10α -hydroxydihydromelleolide (9) [6] all of which were previously isolated from cultures of A. mellea.

The culture broth obtained on filtration of the mycelium of strains CBS 137.32 was extracted successively with hexane and ethyl acetate. Fractionation of the ethyl acetate extract on Sephdex LH-20 (MeOH) followed by column chromatography on silica gel led to the isolation of two new sesquiterpene aryl esters, (11–12).

 $C_{23}H_{30}O_7$ was established as the molecular formula of 11 which was supported by elemental analysis. Comparison of MS, IR and NMR data with those of 3–10 indicated another orsellinate sesquiterpenoid.

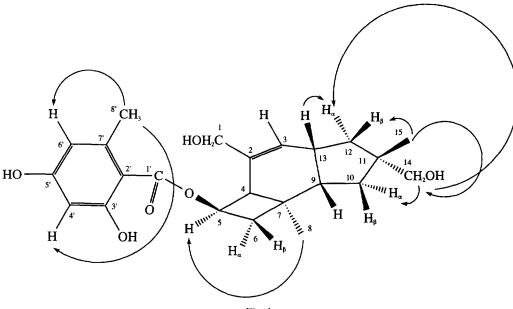


Fig. 1.

The ¹H NMR spectrum showed the characteristic signal due to an allylic alcohol at δ 3.98 and 4.27 (2 × ddd, H-1A and H-1B) and a vinylic proton at δ 5.74 (dd, H-3). The presence of a signal for only one of the germinal methyl groups in the ¹H spectrum and appearance of a triplet resonance at δ 72.37 in the ¹³C NMR was indicative of hydroxyl substitution at C-14 as in 3. This hydroxylation at C-14 accounts for the downfield shifts of C-14 and C-11 ($\Delta \ge \delta$ 40.77, α effect and 6.88, β effect, respectively) and the upfield shift of C-10 and C-15 ($\Delta \delta$ 4.1 and 4.0 respectively, γ effect) relative to the ¹³C resonances recorded for 4dehydodihydromelleolide (4) (Table 1). The remaining 1H and 13C NMR data of 11 resembled that of 3 in all respects except for the absence of a signal corresponding to H-4 in the proton spectrum. The appearance of C-4 in the 13 C spectrum at δ 77.7 indicated hydroxylation at this position. This led to characterization of 11 as 14-hvdroxvdihydromelleolide. 1H-1H COSY and NOESY experiments confirmed this assignments and the expected relative stereochemistry (Fig. 1).

A molecular formula of $C_{23}H_{30}O_7$ was established for 12 by EIMS and elemental analysis. The presence of the orsellinate ester was deduced from IR bands at 1646 (chelated ester carbonyl) and 3413 cm⁻¹ (hydroxyl band) in addition to a base peak at m/z 151 in the EIMS spectrum and characteristic ¹H and ¹³C NMR resonances.

Analysis of the spectral data relating to the sesquiterpenoid moiety indicated a similar structure to that of 10α -hydroxydihydromelleolide (9) [6] with the presence of three aliphatic methyl groups (δ 1.35, 1.02, 0.96; CH₃-8, CH₃-14, CH₃-15, respectively) and hydroxylation at C-10 (δ 3.35, d, J = 3.6 Hz). The signals for the C-1 protons of 12 appear at δ 4.93 and 5.08 while those for $10-\alpha$ -hydroxydihydromelleolide

resonate at δ 4.12. Further comparison of the H-5 resonance of 12 (δ 4.38) with that of 10α -hydroxydihydromelleolide (δ 5.66) indicated an identical sesquiterpenoid moiety for both compounds with a variation in the position of orsellinate ester linkage. This is linked through C-5 for 10α-hydroxydihydromelleolide and through C-1 for 12. This was confirmed by ¹H-¹H COSY and NOESY experiments. A NOESY correlation (Fig. 2) observed between CH₃-8 and 10-OH indicating the hydroxy to be in the α position. The small coupling constant observed between H-9 and H-10, J = 3.9 Hz, indicates that they are cis, confirming the α position of the 10 hydroxyl. A NOESY correlation between H-13 and 5-OH indicated that the hydroxyl at C-5 is β oriented. Correlations between H-3 and H-1A, H-1B with CH₃-8' further corroborates the C-1 orsellinate structure. The recorded ¹³C NMR resonances were in agreement with this assignment and the structure of 12 was concluded to be 5β , 10α -dihydroxy-1-orsellinate-dihydromelleolide. This was further confirmed by comparison of its spectral data with that of armellide A, a C-1 orsellinate protoilludane sesquiterpene ester isolated from cultures of the southern hemisphere species A. novae-zelandiae [9].

EXPERIMENTAL

General. Mps: uncorr; ¹H NMR (270 and 500 MHz) and ¹³C NMR (67.8 MHz): TMS as int. standard. CC: Merck Keiselgel PF60_{254&360} and Sephadex LH-20.

Isolation and purification of metabolites. A strain of Armillaria tabescens was grown on potato dextrose broth (Difco) in 80×11 Roux flasks. The mycelia were harvested (after 30 days growth at 21°) by filtration and macerated in 2×500 ml MeOH. This was extracted into 3×600 ml CHCl₃-MeOH-H₂O

Fig. 2.

(13:7:4). The organic layer yielded the crude mycelium extract (6.43 g) which was chromatographed on Sephadex LH-20 (MeOH) to yield five fractions. Fraction 2 (2.94 g) was further separated by CC on Sephadex (MeOH) followed by purification on a silica gel column with CHCl3-MeOH (100:1)4-dehydro-14-hydroxydigive hydromelleolide (3) (5.2 mg). Fractions 3, 4 and 5 were combined (3.42 g) and were subject to open CC on silica gel using a gradient of CHCl₃-MeOH (100:1-10:1) to yield six subfractions. Further successive purification of these subfractions on silica gel with CHCl₃-MeOH (100:1) and n-hexane-EtOAc (2:1) followed by repeated elution on Sephadex LH-20 for purification led to the isolation of armillyl orsellinate (1) (154 mg), melleolide (2) (66 mg), 4-dehydrodihydromelleolide (4) (50 mg), 13-hydroxy-4methoxymelleolide (5) (14 mg), 4-methoxymelleolide (6) (66 mg), 4-dehydromelleolide (7), (40 mg), dihydromelleolide **(8)** (238)mg), 10α-hydroxy-

dihydromelleolide (9) (100 mg) and armillane (10) (30 mg). The culture broth was extracted with 4×600 ml n-hexane, then with 4×800 ml EtOAc. The EtOAc extract was evaporated yielding a brown oil (1.86 g) which was chromatographed on Sephadex LH-20 with CH₃MeOH as solvent to give three fractions. Fractions 2 and 3 were combined and subject to extensive open CC on silica gel with CHCl₃-MeOH (50:1-10:1) and n-hexane-EtOAc (2:1). After purification by repeated elution on silica gel this led to the isolation of 14-hydroxydihydromelleolide (11) (55 mg) and 5β , 10α -dihydroxy-1-orsellinatedhydromelleolide (12) (6.2 mg). 4-dehydro-14-hydroxydihydromelleolide (3) (5.2 mg) and 10α -hydroxydihydromelleolide (9) (27.4) mg) previously found in the mycelial extract were also isolated by this route.

4-Dehydro-14-hydroxydihydromelleolide (3). Mp 193–195°, $[\alpha]_D^{22} + 137.8^\circ$ (c 0.32, Me₂CO₃). Found: C 68.79; H, 6.5 C₂₃H₃₀O₆ requires C, 68.66; H, 7.46. IR $v_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3 431, 1 646, 1 585, 1 382, 846; EIMS m/z(% rel, int.): 384 $[M-H_2O]^+$ (0.05), 190 (10.1), 159 (18.3), 151 (100); ${}^{1}H$ NMR (CD₃COCD₃): δ 1.04 (3H, s, H₃C-15), 1.22 (2H, d, J = 9.5 Hz, H-10 α , β), 1.29 $(3H, s, H_3C-8)$, 1.64 $(1H, dd, J = 7.6, 13.5 Hz, H-12\beta)$, $1.74 \text{ (1H, } dd, J = 1.4, 13.5 \text{ Hz, H-}12\alpha), 2.12 \text{ (1H, } m,$ H-9), 2.17 (1H, dd, J = 2.5, 8.0 Hz, H-6 β), 2.18 (1H, $d, J = 8.16 \text{ Hz}, \text{H-}6\alpha), 2.40 (3H, s, H_3C-8'), 2.81 (1H, s)$ m, H-13), 2.90 (1H, d, J = 7.8 Hz, H-4), 3.31 (2H, s, H_2C-14), 3.77 (1H, dd, J = 6.7, 12.7 Hz, H-1B), 3.85 (1H, dd, J = 6.7, 12.7 Hz, H-1A), 5.67 (1H, s, H-3),5.78 (1H, dd, J = 8.2, 15.7 Hz, H-5), 6.25 (1H, dd, J = 0.8, 2.5 Hz, H-6', 6.26 (1H, dd, J = 0.84, 2.5 Hz,H-4'), 11.60 (1H, brd, HO-3'); H NMR (CD₃COCD₃, 500 MHz): δ 1.06 (3H, s, H₃C-15), 1.20 (1H, dd, J = 12.3, 12.3 Hz, H-10 α), 1.27 (1H, d, J = 12.3Hz, H-10 β), 1.31 (3H, s, H₃C-8), 1.67 (1H, dd, J = 8.1, 13.3 Hz, H-12 β), 1.76 (1H, dd, J = 1.3, 13.3 Hz, H- 12α), 2.0–2.2 (1H, m, H-9), 2.1–2.2 (2H, m, H-6 α , H-6β), 2.40 (3H, s, H₃C-8'), 2.81 (1H, m, H-13), 2.90 (1H, hidden, H-4), 3.25 (2H, s, H₂C-14), 3.83 (2H, ABq, J = 13.2 Hz, H-1A, B), 5.80 (1H, dd, J = 8.3, 16.1 Hz, H-5), 6.24 (1H, d, J = 2.4 Hz, H-6'), 6.27 $(1H, d, J = 2.4 \text{ Hz}, H-4'); ^{13}\text{C NMR}: \text{Table } 1.$

4-Dehydrodihydromelleolide (4). Mp 115–117° (decomposition), $[\alpha]_D^{22} + 80.5^{\circ}$ (c 2.8, CHCl₃). Found: C, 71.20; H, 7.91. C₂₃H₃₀O₅ requires C, 71.48; H, 7.82. IR $v_{\text{max}}^{\text{KBr}}$ (cm⁻¹): 3 400, 1 641, 1 587, 1 457, 1 382, 836; EIMS m/z (% rel. int.): 386 [M]⁺ (0.01), 368 $[M-H₂O]^+$ (0.1), 355 $[M-CH₂OH]^+$ (0.03), 342 $[M-CO_2]^+$ (0.2), 324 (0.05), 218 (1.4), 201 (1.9), 168 (0.9), 151 (100); CIMS m/z (% rel. int.): 387 [M+H]⁺ (1.9), 369 [M + H - H₂O]⁺ <math>(4.6), 342 [M - CO₂]⁺ <math>(1.9), 219 (22.2), 201 (23.0), 169 (22.2), 151 (100); ¹H NMR δ: 0.99 (3H, s, CH₃-15), 1.00 (3H, s, CH₃-14), 1.08 $(1H, dd, J = 12.4, 12.4 Hz, H-10\alpha), 1.25 (3H, s, CH₃-$ 8), 1.35 (1H, dd, J = 7.0, 12.5 Hz, H-10 β), 1.52 (1H, dd, J = 1.4, 13.2 Hz, H-12 α), 1.84 (1H, dd, J = 8.4, 13.2 Hz, H-12 β), 2.07 (1H, ddd, J = 7.0, 7.0, 12.5 Hz, H-9), 2.14 (1H, d, J = 8.2 Hz, H-6 β), 2.15 (1H, dd, $J = 2.0, 7.5 \text{ Hz}, \text{H-}6\alpha), 2.37 (3\text{H}, s, \text{CH}_3-8'), 2.77 (1\text{H}, \text{H})$

m, H-13), 2.89 (1H, ddd, J = 2.0, 2.0, 7.6 Hz, H-4), 3.91 (1H, d, J = 1.4 Hz, H-1A), 3.96 (1H, d, J = 1.4 Hz, H-1B), 5.68 (1H, brd, s, H-3), 5.74 (1H, ddd, J = 7.5, 7.6, 8.2 Hz, H-5), 6.15 (1H, d, J = 2.5 Hz, H-6'), 6.22 (1H, d, J = 2.5 Hz, H-4'), 11.49 (1H, brd, s, OH-3'); ¹³C NMR: Table 1.

13-Hydroxy-4-methoxymelleolide (5). Mp 205-206°, $[\alpha]_D^{20} + 51.15^\circ$ (c 1.18, MeOH). IR $v_{\text{max}}^{\text{KBr}}$ (cm⁻¹): 3 298, 1 673, 1 651, 1 625, 1 448, 1 256; HR-EIMS m/z (% rel. int.): $430.222 [M]^+$ (0.15), $412.19 [M - H_2O]^+$ (1.5), 386.197 $[M-CO_2]^+$ (0.1), 279.160 $[M-151]^+$ (0.3),262.166 $[M-168]^+$ (60),244.150 $[262.166 - H_2O]^+$ (5.1), 236.128 $[262.166 - C_2H_2]^+$ (20.1), 218.136 [236.128 - H₂O]⁺(29), 207.136 $[C_7H_7O_2]^+$ (15), 168.041 $[C_8H_8O_4]^+$ (12), 151.041 $[C_8H_7O_3]^+$ (100); EIMS m/z (% rel. int.): 430 [M]+ (0.14), 279 $[M-151]^+$ (0.5), 262 $[M-168]^+$ (2.8), 151 (100); ¹H NMR (CD₃COCD₃): δ 0.98 (3H, s, CH₃-14), 1.18 (3H, s, CH₃-15), 1.23 (3H, s, CH₃-8), 1.26 (1H, dd, J = 13.0, 13.0 Hz, H-10 α), 1.72 (1H, ddd, J = 2.0, 7.0, 12.0 Hz, H-10 β), 1.89 (1H, d, J = 14.0 Hz, H- 12α), 1.93 (1H, dd, J = 8.7, 12.0 Hz, H-6 β), 2.49 (1H, dd, J = 9.0, 11.2 Hz, H-6 α), 3.25 (3H, s, OCH₃-4), 4.60 (1H, s, OH-13), 5.81 (1H, dd, J = 8.7, 9.0 Hz, H-5), 6.21 (2H, s, H-4', H-6'), 7.04 (1H, d, J = 1.1 Hz, H-3), 9.15 (1H, s, OH-5'), 9.59 (1H,s, CHO), 11.58 (1H, s, OH-3'); ¹³C NMR: Table 1.

14-Hydroxydihydromelleolide (11). Mp 208–210°, $[\alpha]_D^{20} + 54.46^{\circ}$ (c 3.61, MeOH). Found C, 65.72; H, 7.36; $C_{23}H_{30}O_7$ requires C, 66.01; H, 7.22. IR v_{max}^{KBr} (cm^{-1}) : 3 436, 1 634, 1 385, 1 258, 844; EIMS m/z (% rel. int.): 400 $[M-H_2O]^+$ (21.1), 382 $[M-2H_2O]^+$ (10.5), 356 [M-H₂O-CO₂]⁺ (10.2), 338 (9.3), 249 (0.8), 232 (5.0), 215 (1.0), 206 (19.9), 168 (0.4), 151 (100); CIMS m/z (% rel. int.): 401 [M+H]⁺ - H₂O (0.4),383 $[M + H]^{+} - 2H_{2}O$ (33.0), $[M+H]-H_2O-CO_2]^+$ (0.2), 251 (37.0), 2.33 (100), 151 (78.0); ¹H NMR (CD₃COCD₃+CD₃OD): δ 1.03 (3H, s, CH₃-15), 1.26 (3H, s, CH₃-8) 1.29 (1H, dd, J = 7.3, 12.4 Hz, H-10 β), 1.44 (1H, dd, J = 12.4, 12.5 Hz, H-10 α), 1.70 (2H, dd, J = 7.3, 12.5 Hz, H-12 α , β), 1.70 (1H, dd, H-6 β), 1.96 (1H, dd, J = 8.7, 11.0 Hz, $\text{H-6}\alpha$), 2.22 (1H, ddd, J = 7.0, 7.0, 12.5 Hz, H-9), 2.37 (3H, s, CH₃-8'), 2.79 (1H, m, H-13), 3.27 (2H, s, H-15, A, B), 3.98 (1H, ddd, J = 1.4, 1.5, 13.2 Hz, H-1A), 4.27 (1H, ddd, J = 1.4, 2.5, 13.2 Hz, H-1B), 5.59 (1H, dd, J = 8.72, 8.72 Hz, H-5), 5.74 (1H, dd, J = 1.0, 1.4Hz, H-3), 6.15 (1H, dd, J = 0.8, 2.4 Hz, H-6'), 6.18 (1H, dd, J = 0.6, 2.5 Hz, H-4'); ¹³C NMR: Table 1.

5 β ,10 α -Dihydroxy-1-orsellinatedihydromelleolide (12). Mp 205–207° [α] $_{D}^{20}$ –16.15° (c 0.39, MeOH).

Found: C, 65.74; H, 7.41. $C_{23}H_{30}O_7$ requires C, 66.01; H, 7.21%. IR $v_{\text{max}}^{\text{KBr}}$ (cm⁻¹): 3413, 1646. 1462, 1446, 1 262; EIMS m/z (% rel. int.): 400 [M – H₂O]⁺ (4.3), 382 $[M-2H_2O]^+$ (4.3), 374 $[M-CO_2]^+$ (9.8), 356 $[M-CO_2-H_2O]^+$ (21.3), 338 $[356-H_2O]^+$ (8.3), 250 (20.1), 232 (4.1), 206 (8.2), 168 (9.5), 151 (63.0), 134 (100); ¹H NMR (CD₃COCD₃+CD₃OD): δ 0.96 (3H, s, CH₃-15), 1.02 (3H, s, CH₃-14), 1.25 (3H, s, CH₃-8), 1.41 (1H, dd, J = 1.4, 10.6 Hz, H-6 β), 1.48 (1H, d, $J = 11.5 \text{ Hz}, \text{ H-}12\alpha), 1.81 \text{ (1H, } dd, J = 8.1, 10.4 \text{ Hz},$ H-6 α), 1.91 (1H, dd, J = 9.8, 12.9 Hz, H-12 β), 2.27 (1H, dd, J = 3.9, 9.6 Hz, H-9), 2.52 (3H, s, CH₃-8'),2.91 (1H, m, H-13), 3.35 (1H, d, J = 3.6 Hz, OH-10), 3.49 (1H, s, OH-4), 3.58 (1H, dd, J = 3.9, 3.9 Hz, H- 10β), 4.09 (1H, brd, J = 6.8 Hz, OH-5), 4.38 (1H, ddd, $J = 4.6, 8.4 \text{ Hz}, \text{ H-}5\alpha$), 4.93 (1H, ddd, J = 1.4, 1.6, 12.7 Hz, H-1A), 5.08 (1H, brd, J = 12.7 Hz, H-1B), 5.93 (1H, dJ = 2.5 Hz, H-3), 6.22 (1H, d, J = 2.2 Hz, H-4'), 6.24 (1H, dd, J = 0.56, 2.25 Hz. H-6'), 11.67 (1H, s, OH-3').

REFERENCES

- Shaw, C. G. and Kile, G. A., Armillaria Root Disease. Agricultural Handbook No. 691, Forest Service, USDA, Washington DC, 1991.
- Kile, G. A., Guillaumin, J. J., Mohammed, C. and Watling, R., in *Proceedings of the Eighth IUFRO International Conference on Root and Butt Rots*, eds M. Johansson and J. Stenlid, 1993, pp. 411–436.
- Donnelly, D. M. X., Sanada, S., O'Reilly, J., Polonsky, J., Prangé, T. and Pascard, C., Journal of the Chemical Society, Chemical Communications, 1982, 135.
- Midland, S. L., Izak, R., Wing, R. M., Zake, A. I., Munnecke, D. and Simms, J. J., Tetrahedron Letters, 1982, 23, 2515.
- Donnelly, D. M. X., Coveney, D. J., Fukuda, N. and Polonsky, J., *Journal of Natural Products*, 1986, 49, 111.
- Donnelly, D. M. X., Hutchinson, R. M., Coveney,
 D. and Yonemitsu, M., Phytochemistry, 1990,
 29(8), 2569.
- 7. Donnelly, D. M. X., Coveney, D. J., Fukuda, N. and Polonsky J., *Journal of Natural Products*, 1985, 48, 10.
- Yang, J. S., Su, Y. L., Wang, X. L., Feng, X. Z., Yu, D. Q. and Liang, X. T., Yaoxue Xuebao, 1991, 26(2), 117.
- Arnone, A., Cardillo, R., Di Modungo, V. and Nasini, G., Gazz. Chim. Ital., 1988, 118, 523.