

PII: S0031-9422(96)00760-1

WATER-SOLUBLE PHENOLIC GLYCOSIDES FROM LEAVES OF ALANGIUM PREMNIFOLIUM

HIDEHIKO KIJIMA, TOSHINORI IDE, HIDEAKI OTSUKA,* CHOEI OGIMI,† ЕІЈІ НІКАТА,‡ ANKI ТАКИSHI¶ and Yoshio Такеда§

Institute of Pharmaceutical Sciences, Hiroshima University School of Medicine, 1-2-3 Kasumi, Minami-ku, Hiroshima 734, Japan; †Faculty of Agriculture, Ryukyu University, 1 Chihara, Hirahara-cho, Nakagami-gun, Okinawa 903-01, Japan; ‡Experimental Forest of Ryukyu University, 685 Yona, Kunigami-son, Kunigami-gun, Okinawa 905-14, Japan; ¶134 Furugen, Yomitan-son, Nakagami-gun, Okinawa 904-01, Japan; §Faculty of Integrated Arts and Sciences, The University of Tokushima, 1-1 Minamijosanjima-cho, Tokushima 770, Japan

(Received in revised form 17 September 1996)

Key Word Index—Alangium premnifolium; Alangiaceae; leaves; guaiacylglycerol glucoside; syringoylglycerol glucoside; benzyl alcohol glycoside; henryoside glucoside; pyrocatechol diglucoside.

Abstract—From the water-soluble fraction of a methanol extract of leaves of *Alangium premnifolium*, guai-acylglycerol and syringoylglycerol glucosides, benzyl alcohol triglycosides, salicyl alcohol glycoside, a derivative of henryoside, 3,4-dihydroxyphenethyl alcohol glycoside and pyrocatechol diglucoside were isolated. Their structures were elucidated from spectroscopic evidence. Copyright © 1997 Elsevier Science Ltd

INTRODUCTION

Fifteen megastigmane glycosides were isolated from the *n*-BuOH-soluble fraction of a methanol extract of leaves of *Alangium premnifolium* [1–3]. Isolation work on the water-soluble fraction has yielded two new megastigmane glycosides and two glycosides of simple alcohols [4]. Continued phytochemical investigation of the fraction revealed eight new phenolic glycosides, along with three known phenolic glycosides. The present paper deals with structural elucidation of these compounds.

RESULTS AND DISCUSSION

The water-soluble fraction was separated by a combination of various chromatography techniques. Compounds 1–3, out of the 11 phenolic glycosides, isolated were known and their structures were determined spectroscopically to be guaiacylglycerol 9-O-glucopyranoside (1) [5] and 8-O-glucopyranoside (2) [6], and benzyl alcohol O-(6′-O- β -D-xylopyranosyl)- β -D-glucopyranoside (3) [7], respectively.

Compound 4 (4), $[\alpha]_D - 11.5^\circ$, was isolated as an amorphous powder whose molecular formula was determined to be $C_{17}H_{26}O_{11}$ from the observation of a quasi- $[M]^+$ by negative-ion high resolution FAB-mass

respectively. Therefore, compounds 5 and 6 were expected to be isomers of 4 with regard to the position

spectrometry. The IR spectrum indicated the presence of hydroxyl groups (3300 cm⁻¹), an aromatic ring

(1610 and 1515 cm⁻¹) and phenolic hydroxyl groups

(1230 cm⁻¹); the UV absorption maximas indicated

the presence of an aromatic moiety. The ¹³C NMR

spectrum showed the presence of four aromatic car-

bon signals and one primary and two secondary

alcoholic carbon signals, together with six signals typi-

cal of β -glucopyranosides. Thus, the aromatic ring

must have a symmetrical substitution and, as judged

from the ¹H NMR spectrum, the structure of the agly-

cone portion was identified as syringoylglycerol. The position of the sugar linkage was expected to be the

hydroxyl group at the 9-position (δ_C 72.5), compared with those of guaiacyl glycerol glucopyranosides (1

 $(\delta_{\rm C}$ 72.5) and **2** $(\delta_{\rm C}$ 62.7)) (see Table 1). The relative

stereochemistry of the glycerol portion was expected

to be of the threo-form from the coupling constant

⁽J=7 Hz) of the proton at the 7-position [5, 8, 9]. Compounds **5**, $[\alpha]_D + 7.9^\circ$, and **6**, $[\alpha]_D - 37.7^\circ$, were obtained as needles whose molecular formulae were the same as that of compound **4**; other spectroscopic evidence also indicated that these compounds must have similar structures to compound **4** (Table 1). In the ¹³C NMR spectra, the 9-positions resonated at a higher field (δ_C 63.3 and 62.4, respectively) than that of compound **4** (δ_C 72.5), while each of the secondary alcohols appeared downfield at δ_C 87.5 and 86.7,

^{*}Author to whom correspondence should be addressed.

1552

Table 1. ¹³C NMR data for syringoylglycerol glucosides (4-6) (CD₃OD, 100 MHz)

C	4	5	6
1	133.8	132.8	132.4
2	105.5	105.4	105.7
3	149.0	149.3	149.2
4	135.9	136.3	136.4
5	149.0	149.3	149.2
6	105.5	105.4	105.7
7	75.7	75.1	75.0
8	75.6	87.5	86.7
9	72.5	63.3	62.4
$-OCH_3 \times 2$	56.8	56.9	56.8
1'	105.0	105.3	104.3
2'	75.2	75.6	75.0
3′	78.0	78.1	78.2
4'	71.6	71.5	71.6
5′	77.9	77.9	77.9
6'	62.7	62.6	62.7

of the sugar linkage. The positions of the sugar linkages were shown to be the hydroxyl groups at the 8-positions from $^{13}\text{C-}^{1}\text{H}$ COSY experiments, in which cross-peaks were observed between $\delta_{\rm C}$ 75.1 and $\delta_{\rm H}$ 4.69 (d, J=7 Hz, H-7) for compound 5, and $\delta_{\rm C}$ 75.0 and $\delta_{\rm H}$ 4.66 (d, J=8 Hz, H-7) for compound 6. The relative stereochemistry of the glycerol portion of both compounds must be of the *threo*-form, as judged from the coupling constants of the H-7 protons. Thus, the structures of compounds 5 and 6 were concluded to be syrigoylglycerol 7-O- β -glucopyranosides whose aglycones were enantiomers of each other.

Compound 7 (7) was obtained as an amorphous powder and 13 C and 1 H NMR indicated that it was a compound analogous to 3 with a disubstituted sugar and terminal β -apiofuranose and β -xylopyranose

units [7] (Table 2). GC analysis showed that compound 7 contained one mole each of apiose, xylose and glucose, and this was supported by high resolution-FAB-mass spectrometry, which revealed the elemental composition of 7 to be $C_{23}H_{34}O_{14}$. On irradiation of the anomeric protons at $\delta_{\rm H}$ 4.35 (d, J=7 Hz) and 4.42 (d, J=8 Hz) in NOE experiments, H-6'a, $\delta_{\rm H}$ 3.76 (dd, J=6 and 12 Hz), and one of the benzylic protons, $\delta_{\rm H}$ 4.63 (d, J=12 Hz), showed

Table 2. ¹³C NMR data for benzyl alcohol glycosides (3, 7 and 8) (CD₃OD, 100 MHz)

C	3	7	8
1	139.1	139.0	139.0
2	129.3	129.3	129.3
3	129.3	129.4	129.3
4	128.7	128.8	128.7
5	129.3	129.4	129.3
6	129.3	129.3	129.3
7	72.0	72.0	71.9
1'	103.4	102.2	104.5
2'	74.9	78.8	80.0
3′	78.0	78.5	87.0
4′	71.2	71.2	70.1
5'	77.8	77.7	77.6
6′	69.9	69.8	62.8
1"	105.6	110.7	111.1
2"	75.1	78.0	78.0
3"	77.1	80.7	80.4
4"	71.6	75.3	75.1
5"	66.9	66.0	65.4
l‴	-	105.6	102.2
2"'		74.9	75.4
3‴	_	76.9	78.2
4‴		71.6	71.6
5‴	-	66.9	78.2
6‴			62.6

relaxation. Thus, it was evident that the β -xylopyranosyl moiety was bound to the hydroxyl group at the 6'-position. To determine the position of the other glycosidic linkage, compound 7 was acetylated and then the ${}^{1}H^{-1}H$ COSY spectrum of the octaacetate (7a) analysed. From the two protons at $\delta_{\rm H}$ 3.59 and 3.84 (H-6'a and H-6'b), the connectivities to $\delta_{\rm H}$ 3.64 (H-5'), 4.86 (H-4'), 5.16 (H-3'), 3.71 (H-2') and then to 4.46 (H-1') it was clearly demonstrated that H-2' was not affected by acetylation. Therefore, the structure of compound 7 was elucidated to be benzyl alcohol O-(2'-O- β -apiofuranosyl, 6'-O- β -xylopyranosyl)- β -glucopyranoside.

Compound 8 (8), $C_{24}H_{36}O_{15}$, was an amorphous powder and its spectroscopic data were similar to those of compound 7 (Table 2). Glucose and apiose were detected by GC in the ratio of 2:1. Essentially the same rationale as described above was adopted to elucidate the structure of compound 8. Acetylation gave a nona-acetate (8a). From the interaction between H-1" and H-2', observed in the difference NOE spectrum and the connectivities in the ${}^{1}H^{-1}H$ COSY spectrum from one (δ 4.36) of the anomeric protons of the two glucose moieties to δ 3.77 (H-2'), 3.96 (H-3'), 4.86 (H-4'), 3.59 (H-5') and then to 4.17 (2H, H₂-6'), the structure of compound 8 was elucidated as benzyl alcohol O-(2'-O- β -apiofuranosyl, 3'-O- β -glucopyranosyl)- β -glucopyranoside.

Compound **9**, $[\alpha]_D - 50.6^\circ$, was expected to be a phenolic glycoside from its characteristic absorption maxima in IR and UV spectra and elemental composition $C_{18}H_{26}O_{11}$ determined by high-resolution FAB-mass spectrometry. The ¹³C and ¹H NMR spectra showed the presence of a β -D-xylopyranosyl(1 \rightarrow 6) β -D-glucopyranosyl moiety and a benzene ring substituted with a hydroxyl group and a carbinol group. Therefore, compound **9** is a derivative of salicin. However, comparison of the ¹³C NMR data with those of salicin led to the conclusion that glycosylation must have occurred on the alcoholic hydroxyl group; this is not the case for salicin (see C-7 of **9** and **9a** in Table 3).

Compound 10 (10) was obtained as an amorphous powder and its IR spectrum indicated the presence of benzene rings (1600 and 1490 cm⁻¹) and an ester linkage (1710 cm⁻¹) (Table 3). The ¹³C and ¹H NMR spectra showed that one of the aromatic rings had a symmetrical substitution pattern, similar to an anacardic acid; the other was similar to salicin. In combination with the results of high-resolution FAB-mass spectrometry ($C_{32}H_{42}O_{20}$), compound 10 was expected be a derivative of henryoside (10a) and its structure was thus assigned as the 6'-O- β -glucopyranoside of henryoside [10, 11].

Compound 11 was obtained as needles, mp 173–174°, and its elemental composition was determined to be $C_{19}H_{28}O_{12}$. ¹H NMR showed the presence of three aromatic protons coupled in an ABX-system and the presence of a terminal β -apiofuranoside was shown by the ¹³C NMR spectrum. One more sugar

component was identified as glucose by GC. Further information obtained from the NMR spectra indicated that the aglycone portion must be 3,4-dihydroxyphenethyl alcohol. The position of the glucoside linkage was shown to be the hydroxyl group at the 3position from the observation of NOE enhancement of the aromatic signal (δ_H 7.17; d, J=8 Hz) on irradiation of the anomeric proton of the glucose. Acetylation of compound 11 gave an octaacetate (11a), whose glucose ring protons were assigned on the basis of the 'H-'H COSY spectrum. The downfield shifts of H-3' ($\delta_{\rm H}$ 5.23) and H-4' ($\delta_{\rm H}$ 5.08) on acetylation suggested that the β -apiofuranose moiety must be attached to the hydroxyl group at the 2'-position. Therefore, the structure of compound 11 was determined to be 3,4-dihydroxyphenethyl alcohol 3-O-(2'-O-β-apiofuranosyl)-β-glucopyranoside.

Compound 12 (12) was obtained as needles. Although the 13 C NMR spectrum showed the presence of only three sp² carbon signals, one of which must have an oxygen function and six signals typical of a β -glucopyranoside, negative-ion high-resolution FAB-mass spectrometry revealed its molecular formula to be $C_{18}H_{26}O_{12}$. Therefore, compound 12 was expected to consist of two units of β -glucopyranose and a symmetrically substituted benzene ring as an aglycone. The observation of three sp² carbon signals, one of which bears a hydroxyl substituent, indicated the aglycone to be pyrocatechol. Therefore, the structure of compound 12 was determined to be the 1,2-di-O- β -glucopyranoside of pyrocatechol.

EXPERIMENTAL

General. Mps: uncorr. 1H and 13C NMR: 400 and 100 MHz, respectively. Highly porous synthetic resin: Diaion HP-20 (Mitsubishi Chemical Co. Ltd), 80 mm i.d. \times 600 mm, H₂O-MeOH (4:1) \rightarrow MeOH, frs of 21 collected. Silica gel: Kieselgel 60 (Merck), 70-230 mesh, CHCl₃ → CHCl₃-MeOH, frs of 500 ml being collected. RPCC: ODS [Cosmosil, ODS 75 C₁₈-OPN (Nakarai Tesque, Kyoto), $\Phi = 40 \text{ mm i.d.} \times 250 \text{ mm}$, frs of 10 g collected. DCCC: 500 columns (Tokyo Rikakikai) $\Phi = 2 \text{ mm i.d.} \times 40 \text{ cm, CHCl}_3\text{-MeOH-}$ H_2O-n -PrOH (9:12:8:2); frs of 5 g collected. HPLC: ODS (Inertsil, GL Science) 20 mm i.d. × 250 mm, H₂O-MeOH, flow rate 6 ml min⁻¹, detection at 254 nm. GC: FID detector, column (Shimadzu CPB-20) $0.22 \text{ mm} \times 25 \text{ m}$, $0.25 \mu \text{m}$ film thickness; carrier gas, N₂ at 1.5 kg cm⁻². Salicin was from Nakarai Tesque, Inc. Standard apiose for GC analysis was obtained from alangionoside B [1].

Extraction and isolation. Leaves of A. premnifolium Ohwi were the same as those used previously [1]. A MeOH extract of leaves of A. premnifolium (5.72 kg) was concd to 3 l and then 150 ml of H_2O was added to make a 95% aq. MeOH soln. The soln was extracted with 3 l of n-hexane and the MeOH layer concd to give a residue. This residue was suspended in H_2O (1.5 l) and then extracted with EtOAc (1 l × 2)

1554 H. Kijima *et al.*

Table 3. ¹³C NMR Data for compounds 9-12, and salicin (9a) and henryoside (10a) (CD₃OD, 100 MHz)

C	9	9a	10		10a*	11	12†
1	125.2	132.3	117.4		111.7	136.4	147.3
2	156.7	157.2	156.5		158.4	119.4	147.3
3	116.4	117.2	111.6		107.8	145.3	118.2
4	130.2	129.9	132.8		134.2	148.6	122.7
5	120.6	123.8	111.6		110.5	117.4	122.7
6	131.3	130.0	156.5		160.1	121.3	118.7
7	68.1	61.1	168.4		170.1	39.7	_
8						64.3	
1'	103.6	103.5	126.9		126.9	103.6	101.6
2′	75.1	75.2	156.8		156.8	83.6	73.3
3′	77.7	78.3	116.9		116.8	77.7	76.9
4′	71.6	71.5	130.8		130.9	71.2	69.6
5′	77.2	78.1	123.8		123.7	77.6	76.2
5′	69.8	62.6	131.0		130.8	62.4	60.6
7′			63.7		63.7		
1"	105.5	_	102.9		102.7	112.6	101.6
2"	75.0	_	74.9		74.9	78.1	73.3
3"	77.9	_	78.3		78.3	79.7	76.9
4″	71.2	_	71.2		71.2	74.9	69.6
5"	66.9	_	77.9		77.9	65.0	76.2
5"	_	_	62.6		62.6	_	60.6
1"', 1""	_	-	103.2	103.2	103.1		_
2"', 2""	news .	-	75.0	75.0	74.9	_	_
3"', 3""	_		78.3	78.3	78.3	-	_
4"', 4""	_	_	71.3	71.3	71.3	_	_
5''', 5''''	_	_	78.0	78.0	78.1		_
6"',6 ""	_	_	62.5	62.5	62.5	_	

^{*}Data for henryoside previously isolated [11].

and n-BuOH (1.5 l and 1 l), successively. The H₂O layer was evapd to dryness to give 365 g of a H₂O-sol. fr. This fr. was subjected to Diaion HP-20 CC, giving 3 frs in yields of 18.1 g (5-10% MeOH), 12.5 g (20% MeOH) and 22.6 g (40% MeOH). The first fr. was chromatographed on silica gel (500 g, $\Phi = 55$ mm i.d. \times 44 cm) with CHCl₃ (1.5 l), CHCl₃-MeOH (39:1, 3 1; 19:1, 6 1; 37:3, 6 1; 9:1, 6 1; 17:3, 6 1; 4:1, 6 1; 3:1, 3 1; and 7:3, 3 l), and $CHCl_3-MeOH-H_2O$ (30:12:1, 3 l; and 15:6:1, 3 l). The pooled fr. (1.32 g in frs 43-48) was purified by RPCC (10% MeOH → 50% MeOH, 361 mg in frs 36-39), DCCC (223 mg in frs 14-18) and finally HPLC (5% MeOH), giving 2 (6 mg), 1 (79 mg) and 4 (61 mg). The pooled fr. (1.34 g in frs 55-64) was purified by RPCC (10% MeOH \rightarrow 50% MeOH, 99 mg in frs 61-69) and then DCCC, giving 25 mg of 12 in a crystalline state. From the pooled fr. (1.99 g in frs 77-86), 5 (20 mg) and 6 (28 mg) were obtained by RPCC (10% MeOH → 50% MeOH, 246 mg in frs 43-50), DCCC (103 mg in frs 17-24) and then HPLC (5% MeOH).

Two other frs obtained from Diaion HP-20 CC were sepd in a similar manner as previous compounds by a combination of silica gel CC, RPCC, DCCC and HPLC, giving six compounds on CC in the following yields: 3 (125 mg), 9 (35 mg), 10 (73 mg) and 11 (29

mg) from the second fr. and 7 (32 mg) and 8 (9 mg) from the last fr.

Known compounds isolated. Guaicylglycerol 9-O-β-D-glucopyranoside (1), $[\alpha]_D^{29} - 6.5^\circ$ (MeOH, c 1.38) [5]. Guaicylglycerol 8-O-β-D-glucopyranoside (2), $[\alpha]_D^{29} - 16.5^\circ$ (MeOH, c 0.37) [6]. Benzyl alcohol O-(6'-O-β-D-xylopyranosyl)-β-D-glucopyranoside (3), mp 187–189°, $[\alpha]_D^{21} - 70.6^\circ$ (MeOH, c 0.60). ¹³C NMR (CD₃OD): Table 2 [7].

Compound 4. Amorphous powder. $[\alpha]_D^{29} - 11.9^{\circ}$ (MeOH, c 1.39). IR $v_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3300, 2875, 1610, 1515, 1460, 1325, 1230, 1175, 1120, 1070, 1045. UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (log ε): 210 (4.18), 231 (3.75), 271 (2.99). ¹H NMR (CD₃OD): δ 3.23 (1H, dd, J = 8 and 9 Hz, H-2'), 3.62 (1H, dd, J = 7 and 10 Hz, H-9a), 3.66 (1H, dd, J = 5 and 12 Hz, H-6'a), 3.84 (6H, s, -OCH₃ × 2), 3.84 (1H, dd, J = 2 and 12 H, H-6'b), 3.90 (1H, dt, J = 3 and 7 Hz, H-8), 4.05 (1H, dd, J = 3 and 10 Hz, H-9b), 4.30 (1H, d, J = 8 Hz, H-1'), 4.57 (1H, d, J = 7 Hz, H-7), 6.70 (2H, s, H₂-2 and 6). ¹³C NMR (CD₃OD): Table 1. HR-FAB-MS (negative centroid) m/z: 405.1417 [M-H]⁻¹ (C₁₇H₂₅O₁₁ requires 405.1397).

Compound **5**. Needles, mp 204–206° (MeOH). $[\alpha]_D^{29} + 7.9$ °(MeOH, c 0.63). IR $v_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3350, 2900, 1615, 1520, 1465, 1380, 1325, 1235, 1160, 1120, 1080, 1030. UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (log ε): 211 (4.11), 230 (3.72), 271

[†]In DMSO-d₆.

(3.03). ¹H NMR (CD₃OD): δ 3.32 (1H, dd, J = 7 and 9 Hz, H-2'), 3.40 (1H, dd, J = 5 and 12 Hz, H-9a), 3.56 (1H, dd, J = 4 and 12 Hz, H-9b), 3.65 (1H, dd, J = 6 and 12 Hz, H-6'a), 3.82 (1H, m, H-8), 3.84 (1H, dd, J = 2 and 12 Hz, H-6'b), 3.85 (6H, s, -OCH₃ × 2), 4.37 (1H, d, J = 7 Hz, H-1'), 4.69 (1H, d, J = 7 Hz, H-7), 6.70 (2H, s, H-2 and 6). ¹³C NMR (CD₃OD): Table 1. HR-FAB-MS (negative centroid) m/z: 405.1417 [M - H]⁻¹ (C₁₇H₂₅O₁₁ requires 405.1397).

Compound 6. Needles, mp 204–205° (MeOH). [α]₂²⁹ – 37.7° (MeOH, c 0.48). IR $v_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3350, 2900, 1610, 1515, 1460, 1325, 1220, 1155, 1110, 1070, 1020. UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (log ε): 212 (4.18), 231 (3.80), 271 (3.11). ¹H NMR (CD₃OD): δ 3.32 (1H, dd, J = 8 and 9 Hz, H-2′), 3.32 (1H, dd, J = 7 and 12 Hz, H-9a), 3.40 (1H, m, H-5′), 3.50 (1H, dd, J = 3 and 12 Hz, H-9b), 3.69 (1H, dd, J = 5 and 12 Hz, H-6′a), 3.85 (1H, m, H-8), 3.85 (6H, s, -OCH₃ × 2), 3.89 (1H, dd, J = 2 and 12 Hz, H-6′b), 4.52 (1H, d, J = 8 Hz, H-1′), 4.66 (1H, d, J = 8 Hz, H-9), 6.71 (2H, s, H₂-2 and 6). ¹³C NMR (CD₃OD): Table 1. HR-FAB-MS (negative centroid) m/z: 405.1363 [M – H]⁻¹ (C₁₇H₂₅O₁₁ requires 405.1397).

Compound 7. Amorphous powder. $[\alpha]_D^{23} - 87.2^{\circ}$ (MeOH, c 2.11). IR $v_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3350, 2900, 1625, 1455, 1040. UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (log ε): 213 (3.35), 252 (2.33), 258 (2.38), 263 (2.30). ¹H NMR (CD₃OD): δ 3.19 (H, dd, J = 10 and 11 Hz, H-5"a), 3.23 (H, dd, J = 8 and 9 Hz, H-2", 3.50 (H, d, J = 11 Hz, H-5"a), 3.56 (H, d, J = 11 Hz, H-5"b, 3.63 (H, d, J = 10 Hz, H-4"a), 3.76(H, dd, J = 6 and 12 Hz, H-6'a), 3.87 (H, dd, J = 5)and 11 Hz, H-5"b), 3.93 (H, d, J = 10 Hz, H-4"b), 3.94 (H, d, J = 2 Hz, H-2") 4.11 (H, dd, J = 2 and 12 Hz, H-6'b), 4.35 (H, d, J = 7 Hz, H-1"), 4.42 (H, d, J = 8 Hz, H-1'), 4.63 (H, d, J = 12 Hz, H-7a), 4.89 (H, d, J = 12 Hz, H-7b), 5.38 (H, d, J = 2 Hz, H-1"),7.31 (H, br t, J = 8 Hz, H-4), 7.33 (2H, br t, J = 8 Hz, H_2 -3 and 5), 7.42 (2H, br d, J = 8 Hz, H_2 -2 and 6). ¹³C NMR (CD₃OD): Table 2. HR-FAB-MS (negative centroid) m/z: 533.1858 [M-H]⁻ (C₂₃H₃₃O₁₄ requires 533.1871).

Compound 8. Amorphous powder. $[\alpha]_D^{24} - 90.0^{\circ}$ (MeOH, c 0.50). UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (log ε): 214 (3.25), 251 (2.47), 258 (2.49), 263 (2.42). 1 H NMR (CD₃OD): δ 3.26 (H, dd, J = 8 and 9 Hz, H-2"), 3.50 (H, d, J = 12Hz, H-5"a), 3.53 (H, d, J = 12 Hz, H-5"b), 3.56 (H, dd, J = 8 and 9 Hz, H-2'), 3.63 (H, dd, J = 2 and 12 Hz, H-6'a or 6''a), 3.65 (H, d, J = 10 Hz, H-4"a), 3.68 (H, t, J = 10 Hz, H-3'), 3.70 (H, dd, J = 6 and 12 Hz,H-6" a or 6'a), 3.88 (H, dd, J = 2 and 12 Hz, H-6'b or 6"b), 3.90 (H, dd, J = 2 and 12 Hz, H-6"b or 6'b), 3.97 (H, d, J = 2 Hz, H-2''), 3.98 (H, d, J = 10 Hz, H-2'')4"b), 4.45 (H, d, J = 8 Hz, H-1'), 4.57 (H, d, J = 8 Hz, H-1'''), 4.65 (H, d, J = 12 Hz, H-7a), 4.92 (H, d, J = 12Hz, H-7b), 5.45 (H, d, J = 2 Hz, H-1"), 7.30 (H, br t, J = 7 Hz, H-4), 7.32 (2H, br t, J = 7 Hz, H₂-3 and 5), 7.43 (2H, br d, J = 7 Hz, H₂-2 and 6). ¹³C NMR (CD₃OD): Table 2. HR-FAB-MS (negative centroid) m/z: 563.1974 [M-H]⁻ $(C_{24}H_{35}O_{15}$ requires 563.1976).

Compound 9. Amorphous powder. $[α]_D^{29} - 50.6^\circ$ (MeOH, c 0.83). IR $v_{\text{max}}^{\text{KBr}}$ cm $^{-1}$: 3300, 2850, 1610, 1455, 1360, 1270, 1240, 1160, 1065, 1035, 760. UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (log ε): 215 (3.81), 278 (3.40). ¹H NMR (CD₃OD): δ 3.77 (1H, dd, J = 6 and 12 Hz, H-6'a), 3.87 (1H, dd, J = 5 and 12 Hz, H-5"b), 4.12 (1H, dd, J = 2 and 12 Hz, H-6'b), 4.73 (1H, d, J = 12 Hz, H-7a), 4.91 (1H, d, J = 12 Hz, H-9b), 4.37 (1H, d, J = 8 Hz, H-1'), 4.40 (1H, d, J = 8 Hz, H-1"), 6.79 (1H, dd, J = 1 and 8 Hz, H-6), 6.81 (1H, dt, J = 1 and 8 Hz, H-5), 7.13 (1H, dt, J = 1 and 8 Hz, H-3). ¹³C NMR (CD₃OD): Table 3. HR-FAB-MS (negative centroid) m/z: 417.1413 [M - H] $^-$ (C₁₈H₂₅O₁₁ requires 417.1397).

Compound 10. Amorphous powder. $[\alpha]_D^{29} - 34.0^{\circ}$ (MeOH, c = 1.03). IR $v_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3300, 2875, 1710, 1600, 1490, 1465, 1375, 1285, 1245, 1050, 760. UV $\hat{\lambda}_{max}^{MeOH}$ nm (log ϵ): 212 (4.19), 275 (3.49); ¹H NMR (CD₃OD): δ 3.56 (1H, dd, J = 8 and 9 Hz, H-2"), 3.66 $(2H, dd, J = 5 \text{ and } 12 \text{ Hz}, H_2-6''' \text{a and } 6'''' \text{a}), 3.72 (1H,$ dd, J = 5 and 12 Hz, H-6"a), 3.84 (2H, dd, J = 2 and 12 Hz, H₂-6"'b and 6""b), 3.89 (1H, dd, J = 2 and 12 Hz, H-6"b), 4.94 (2H, d, J = 7 Hz, H₂-1" and 1""), 4.94 (1H, d, J = 8 Hz, H-1"), 5.45 (1H, d, J = 13 Hz,H-7'a), 5.63 (1H, d, J = 13 Hz, H-7'b), 6.97 (2H, d, J = 8 Hz, H₂-3 and 5), 7.08 (1H, dt, J = 1 and 8 Hz, H-5'), 7.23 (1H, dd, J = 1 and 8 Hz, H-3'), 7.31 (1H, dt, J = 1 and 8 Hz, H-4'), 7.36 (1H, t, J = 8 Hz, H-4), 7.52 (1H, dd, J = 1 and 8 Hz, H-6'). ¹³C NMR (CD₃OD): Table 3. HR-FAB-MS (negative centroid) 745.2153 $[M-H]^ (C_{32}H_{41}O_{20})$ requires m/z:

Compound 11. Needles, mp 173-174° (MeOH). $[\alpha]_{D}^{19} - 74.3^{\circ}$ (MeOH, c 0.77). IR $v_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3300, 2900, 1590, 1505, 1290, 1210, 1165, 1125, 1065, 1010, 825. UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (log ε): 204 (4.10), 217 (3.82), 277 (3.39). ¹H NMR (CD₃OD): δ 2.70 (2H, t, J = 7 Hz, H_2 -7), 3.37 (1H, ddd, J = 2, 5 and 10, H-5'), 3.69 (2H, $t, J = 7 \text{ Hz}, H_2-8$, 3.72 (1H, dd, J = 5 and 12 Hz, H-6'a), 3.79 (1H, d, J = 10 Hz, H-4"a), 3.89 (1H, dd, J = 2 and 12 Hz, H-6'b), 3.99 (1H, d, J = 4 Hz, H-2"), 4.12 (1H, d, J = 10 Hz, H-4"b), 4.72 (1H, dd, J = 8 Hz, H-1', 5.33 (1H, d, J = 4 Hz, H-1''), 6.63(1H, dd, J = 2 and 8 Hz, H-6), 6.72 (1H, d, J = 2)Hz, H-2), 7.17 (1H, d, J = 8 Hz, H-5). ¹³C NMR (CD₃OD): Table 3. HR-FAB-MS (negative centroid) m/z: 447.1511 [M-H]⁻ (C₁₉H₂₇O₁₂ requires 447.1503).

Compound 12. Needles, mp 232–234° (MeOH). [α] $_{28}^{128}$ – 52.5° (H $_{2}$ O, c 1.01). UV $\lambda_{\rm max}^{\rm MeOH}$ nm (log ε): 214 (3.85), 270 (3.11). ¹H NMR (DMSO- d_{6} with trace amount of D $_{2}$ O): δ 3.16 (2H, t, J = 7 Hz, H $_{2}$ -2′ and 2″), 3.46 (2H, dd, J = 5 and 12 Hz, H $_{2}$ -6′a and 6″a), 3.67 (2H, dd, J = 2 and 12 Hz, H $_{2}$ -6′b and 6″b), 4.78 (2H, d, J = 7 Hz, H $_{2}$ -1′ and 1″), 6.97 and 7.16 (each 2H, each m, H $_{2}$ -3 and 6, and H $_{2}$ -4 and 5). ¹³C NMR (DMSO- d_{6}): Table 3. HR-FAB-MS (negative centroid) m/z: 433.1330 [M – H] $_{2}$ - (C $_{18}$ H $_{25}$ O $_{12}$ requires 433.1346).

Acetylation of compound 7. Compound 7 (19 mg)

1556 H. Kijima *et al.*

was acetylated with a mixt. of OAc and pyridine (250 μ l each) at 50° for 12 hr. The reagents were evapd off under an N₂ stream and the residue purified by prep. TLC on silica gel developed with CHCl3-MeOH (30:1) and then eluted with CHCl3-MeOH (4:1)] to give 21 mg (68%) of an octa-acetate (7a). Needles (MeOH), mp 196–199°. $[\alpha]_D^{21}$ –45.9° (CHCl₃, c 1.35). UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (log ε): 208 (3.85), 252 (2.26), 257 (2.35), 264 (2.24), 267 (2.11). ¹H NMR (CD₃OD): δ 1.20 (3H), 2.00 (3H), 2.01 (3H), 2.01 (3H), 2.04 (3H), 2.05 (3H), 2.06 (6H) (each s, CH₃CO- \times 8), 3.32 (1H, dd, J = 5 and 12 Hz, H-5"a), 3.59 (1H, dd, J = 6 and 11 Hz, H-6'a), 3.64 (1H, ddd, J = 2, 6 and 9 Hz, H-5'), 3.71 (1H, dd, J = 8 and 10 Hz, H-2'), 3.84 (1H, dd, J = 2 and 11 Hz, H-6'b), 4.01 (1H, d, J = 10 Hz, H-4'''a), 4.12 (1H, dd, J = 9 and 12 Hz, H-5"b), 4.20 (1H, d, J = 10 Hz, H-4"b), 4.46 (1H, d, J = 8 Hz, H-1'), 4.52 (1H, d, J = 11 Hz, H-5"a), 4.54 (1H, d, J = 7 Hz,H-1"), 4.55 (1H, d, J = 11 Hz, H-5"b), 4.64 (1H, d, J = 12 Hz, H-7a, 4.86 (1H, t, J = 9 Hz, H-4'), 4.91(1H, d, J = 12 Hz, H-7b), 5.10 and 5.13 (each 1H, each s, H-1" and H-2", 5.13 (1H, t, J = 8 Hz, H-3"), 5.16 (1H, br t, J = 9 Hz, H-3'), 7.3–7.4 (5H, m, H₅-1, 2, 3, 4 and 5). 13 C NMR (CDCl₃): δ 20.6, 20.7, 20.7 $(\times 2)$, 20.7 $(\times 2)$, 20.8 and 21.1 (CH₃CO-×8), 61.9 (C-6"), 63.2 (C-5""), 67.7 (C-6'), 68.8 (C-4'), 69.3 (C-4"), 70.5 (C-2), 70.9 (C-7), 71.2 (C-3"), 72.9 (C-4""), 73.1 (C-5'), 74.3, 76.1, 76.4, 83.6 (C-3"), 100.1, 100.5, 106.1, 128.0 (C-4), 128.0 (×2, C-2 and 6, or C-3 and 5), 128.5 (×2, C-3 and 5, or C-2 and 6), 136.7 (C-1), 169.2, 169.4, 169.7, 169.8, 169.8, 170.0, 170.1 and $170.4 \text{ (CH}_3\text{CO} \times 8)$. EI-MS (mass range 100-900) m/z(rel. int.): 763 (0.5) [Glu(OAc)₂Xyl(OAc)₃Api(OAc)₃ oxonium ion]⁺, 683 (5.1), 533 (5.7), 428 (8.8), 259 (100) [Xyl(OAc)₃ and Api(OAc)₃ oxonium ion]⁺, 217 (8.5), 199 (17.6), 187 (5.3), 170 (21.8), 157 (46.4), 139 (99). FAB-MS (negative centroid) m/z: 869.2681 $[M-H]^-$ (C₃₉H₄₉O₂₂ requires 869.2715).

Acetylation of compound 8. Compound 8 (7.0 mg) was acetylated and purified in a similar manner to compound 7 give 7.5 mg (68%) of a nona-acetate (8b). Amorphous powder. $\left[\alpha\right]_{D}^{21} - 56.5^{\circ}$ (CHCl₃, c 0.51). UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (log ε): 208 (3.90), 252 (2.23), 257 (2.31), 263 (2.21), 267 (2.05). ¹H NMR (CD₃OD): δ 1.93, 1.95, 1.99, 2.02, 2.03, 2.04, 2.06, 2.08 and 2.17 (each 3H, each s, CH₃CO-×9), 3.59 (H, td, J = 4 and 10 Hz, H-5'), 3.77 (H, dd, J = 8 and 9 Hz, H-2'), 3.79 (H, ddd, J = 2, 4 and 10 Hz, H-5'''), 3.96 (H, t, J = 9)Hz, H-3'), 4.02 (H, dd, J = 2 and 12 Hz, H-6"a), 4.03 $(H, d, J = 10 \text{ Hz}, H-4"a), 4.17 (2H, d, J = 4 \text{ Hz}, H_2-10)$ 6'a and 6'b), 4.21 (H, d, J = 10 Hz, H-4"b), 4.36 (H, d, J = 8 Hz, H-1', 4.38 (H, d, J = 12 Hz, H-5''a), 4.45(H, dd, J = 4 and 12 Hz, H-6'''b), 4.57 (H, d, J = 12)Hz, H-7a), 4.70 (H, d, J = 12 Hz, H-5"b), 4.84 (H, dd, J = 7 and 9 Hz, H-2", 4.86 (H, t, J = 9 Hz, H-4), 4.89 (H, d, J = 7 Hz, H-1'''), 4.91 (H, d, J = 12 Hz, H-1''')7b), 5.10 (H, t, J = 9 Hz, H-4"), 5.23 (H, s, H-2"), 5.31 (H, t, J = 9 Hz, H-3") 5.45 (H, s, H-1"), 7.3–7.4 (5H, m, H₅-1, 2, 3, 4 and 5). ¹³C NMR (CDCl₃): δ 20.4, 20.5, 20.6 (×3), 20.6, 20.7, 20.8 and 21.1

(CH₃CO-×9), 61.6 (C-6'), 62.4 (C-6''), 64.0 (C-5''), 68.1 (C-4'''), 68.4 (C-4'), 70.5 (C-7), 71.56 (C-5' or 5'''), 71.6 (C-5'' or 5'), 72.4 (C-2'''), 72.9 (C-3'''), 73.9 (C-4''), 76.0 (C-2'), 76.5 (C-2''), 80.3 (C-3'), 83.8 (C-3), 99.2 (C-1'''), 99.6 (C-1'), 105.5 (C-1''), 127.9 (C-4), 128.0 (C-2 and 6 or C-3 and 5), 128.4 (C-3 and 5 or C-2 and 6), 136.7 (C-1), 168.6, 169.3, 169.4, 169.7, 170.2, 170.2, 170.4, 170.5 and 170.7 (CH₃CO-×9). EI-MS (mass range, 100-900) m/z (rel. int.): 835 (1.1) [Glu(OAc)₂Glu(OAc)₄Api(OAc)₃ oxonium ion]⁺, 331 (18.9) [Glu(OAc)₄ oxonium ion]⁺, 259 (100) [Api(OAc)₃ oxonium ion]⁺, 259 (100) [Api(OAc)₃ oxonium ion]⁺, 236 (12.6), 217 (13.5), 169 (21.0), 157 (20.5), 139 (60.5). FAB-MS (negative centroid) m/z: 941.2910 [M – H]⁻ (C₄₂H₅₃O₂₄ requires 941.2927).

Acetylation of compound 11. Compound 11 (10.0 mg) was acetylated and purified as described for 7 to give 8.7 mg of an octa-acetate (11a). Amorphous powder. $[\alpha]_D^{28}$ – 34.5° (CHCl₃, c 0.58) UV $\hat{\lambda}_{max}^{MeOH}$ nm (log ε): 214 (4.00), 272 (3.14). ¹H NMR (CDCl₃): δ 1.98 (3H), 2.02 (3H), 2.02 (6H), 2.04 (3H), 2.09 (3H) and 2.11 (3H) (CH₃CO- \times 7 on alcoholic hydroxyls), 2.31 (3H) (CH₃CO- on a phenolic hydroxyl), 2.89 (2H, $t, J = 7 \text{ Hz}, H_2-7$, 3.77 (1H, dddd, J = 2, 5 and 9 Hz, H-5'), 3.95 (1H, dd, J = 7 and 9 Hz, H-2'), 4.06 (1H, dd, J = 2 and 12 Hz, H-6'a), 4.10 (1H, d, J = 10 Hz, H-4"a), 4.25 (2H, t, J = 7 Hz, H₂-8), 4.25 (1H, dd, J = 5 and 12 Hz, H-6'b), 4.33 (1H, d, J = 10 Hz, H-4"b), 4.51 (1H, d, J = 12 Hz, H-5"a), 4.62 (1H, d, J = 12 Hz, H-5"b, 5.01 (1H, d, J = 7 Hz, H-1'), 5.08(1H, t, J = 9 Hz, H-4'), 5.20 and 5.21 (each 1H, each s, H-1" and 2"), 5.24 (1H, t, J = 9 Hz, H-3'), 6.95 (1H, d, J = 1 Hz, H-2), 7.02 (1H, d, J = 8 Hz, H-5), 7.05 (1H, dd, J = 1 and 8 Hz, H-6). ¹³C NMR (CDCl₃): δ 20.5, 20.6, 20.6, 20.6, 20.7, 20.7, 20.9, 21.1 (CH₃CO- \times 8), 34.2 (C-7), 61.8, 63.1, 64.5, 68.4, 71.8, 72.9, 74.1, 76.5, 76.5, 83.6 (C-3"), 99.5 (C-1'), 106.5 (C-1"), 117.4 (C-5), 124.1 (C-2), 127.0 (C-6), 133.4 (C-1), 140.7 (C-4), 146.5 (C-3), 168.9, 169.2, 169.6, 169.7, 170.1, 170.3, 170.5, 171.0 (CH₃CO- \times 8). EI-MS (mass range, 100– 900) (rel. int.) m/z: 664 (0.3) [M – AcOH × 2]⁺, 604 (0.7) $[M-AcOH \times 3]^+$, 547 (41) $[Api(OAc)_3$ Glu(OAc)₃ oxonium ion]⁺, 368 (47), 259 (100) [Api(OAc)₃ oxonium ion]⁺. HR-FAB-MS (negative centroid) m/z: 783.2375 [M-H]⁻ (C₃₅H₄₃O₂₀ requires 783.2348).

GC analyses of sugars. About 2 mg of each sample (7, 8 and 11) was hydrolysed in 5% HCl in dry MeOH at 95° for 3 hr. The reaction mixt. was neutralized by the addition of Ag₂CO₃ and then filtered. The filtrate was evapd to dryness and then treated with several drops of trimethylsilylimidazole at 60° for 15 min. After partitioning between *n*-hexane and H₂O, the concd organic layer was subjected to GC analysis. Standard sugars were: apiose, 2.71, 2.84, 2.96 and 3.15 min; xylose, 5.28 and 5.86 min; and glucose, 8.18 and 8.87 min. Compound 7: 2.71, 2.83, 2.96 and 3.14 min (apiose), 5.26 and 5.84 min (xylose), and 8.21 and 8.89 min (glucose). Compound 8: 2.72, 2.84, 2.97 and 3.16 min (apiose) and 8.17 and 8.87 min (glucose). Com-

pound 11: 2.71, 2.83, 2.96 and 3.14 min (apiose) and 8.20 and 8.89 min (glucose).

REFERENCES

- 1. Otsuka, H., Kamada, K., Ogimi, C., Hirata, E., Takushi, A. and Takeda, Y., *Phytochemistry*, 1994, 35, 1331.
- Otsuka, H., Yao, M., Kamada, K., Yuasa, K., Kida, I. and Takeda, Y., *Phytochemistry*, 1995, 38, 1431.
- 3. Otsuka, H., Yao, M., Kamada, K. and Takeda, Y., Chemical and Pharmaceutical Bulletin, 1995, 43, 754.
- 4. Kijima, H., Otsuka, H., Ide, T., Ogimi, C., Hirata,

- E., Takushi, A. and Takeda, Y., *Phytochemistry*, 1996, **42**, 723.
- Lundgren, L. N., Popoff, T. and Theander, O., Acta Chemica Scandinavica, 1982, B 36, 695.
- 6. Theander, O., Acta Chemica Scandinavica, 1965, 19, 1792.
- 7. Otsuka, H., Takeda, Y. and Yamasaki, K., *Phytochemistry*, 1990, **29**, 3681.
- 8. Ishimaru, K., Nonaka, G. and Nishioka, I., *Phytochemistry*, 1987, **26**, 1147.
- 9. Sugiyama, M. and Kikuchi, M., Chemical and Pharmaceutical Bulletin, 1992, 40, 325.
- 10. Jensen, S. R., Nielsen, B. J. and Norn, V., *Phytochemistry*, 1979, **18**, 904.
- 11. Otsuka, H., Yamasaki, K. and Yamauchi, T., *Phytochemistry*, 1989, **28**, 3197.