

PII: S0031-9422(96)00728-5

AN UNUSUALLY LIPOPHILIC FLAVONOL GLYCOSIDE FROM RANUNCULUS SARDOUS POLLEN

KENNETH R. MARKHAM,* KEVIN A. MITCHELL and MARIA CAMPOST

NZ Institute for Industrial Research and Development, P.O. Box 31310, Lower Hutt New Zealand; †Laboratory of Pharmacognosy, University of Coimbra, 3000 Coimbra, Portugal

(Received 28 August 1996)

Key Word Index—*Ranunculus sardous*; Ranunculaceae; pollen; 7-*O*-methylherbacetin-3-*O*-[2-O-E-feruloyl- β -D-glucoside].

Abstract—A lipophilic flavonoid detected by HPLC in earlier work and assumed to be a flavone aglycone from preliminary screening has been isolated from *Ranunculus sardous* pollen. It is shown, principally by NMR techniques, to be a new flavonoid glycoside, 7-O-methylherbacetin 3-O-[2-O-E-feruloyl- β -D-glucoside]. © 1997 Elsevier Science Ltd. All rights reserved

INTRODUCTION

In the course of developing a method for the characterization of bee pollens via the HPLC profiles of their EtOH/H₂O extracts [1], a more intensive study of the glycosides from Ranunculus sardous Crantz. pollen was carried out [2]. The major components with the spectra and HPLC retention times (30.5-31.6 min) of flavonoid glycosides were isolated and identified and shown to be 7- and 8-O-methylherbacetin 3-O-diglycosides, with the new compound 7-O-methylherbacetin 3-O-sophoroside being the major component. One other major flavonoid (1) with a flavone-like absorption spectrum and a retention time of 43.5 min was initially thought to be a flavone aglycone and was not identified. The present paper describes the isolation and structure identification of this compound.

RESULTS AND DISCUSSION

Compound 1 was isolated from an EtOH/H₂O extract of *R. sardous* pollen by successive column chromatography over reversed phase silica (RP-18) and LH-20. Its absorption spectrum with λ_{max}^{MeOH} nm: 280, 310 sh, 325 (and a slight shoulder at 380) was initially interpreted as that of a flavone (e.g. see ref. [3]), and coupled with the aglycone-like HPLC retention time of 43.5 min. suggested that 1 was a flavone aglycone. Its ¹H NMR spectrum however, indicated a much more complex structure. A sugar H-1 doublet

*Author to whom correspondence should be addressed.

(J = 7.8 Hz) was evident at $\delta 5.76$, accompanying the signals associated with the flavone nucleus ($\delta 8.10 \ d$, $J = 8.9 \ Hz$; 6.91 d, $J = 8.9 \ Hz$; 6.51 s). Additionally, the presence of a hydroxylated *trans*-cinnamoyl moiety and two methoxyl groups were revealed.

Acid hydrolysis of 1 gave glucose plus an aglycone with the same retention time and distinctive absorption spectrum [2] as 7-O-methylherbacetin. This aglycone is also indicated by the proton resonances of the flavonoid nucleus of 1 which match closely with those of 7-O-methylherbacetin 3-O-sophoroside [2]. Alkaline treatment of 1 yielded ferulic acid which was identified by HPLC, thereby accounting for the second methoxyl indicated by the ¹H NMR spectrum.

The site of attachment of the glucose to 7-Omethylherbacetin was considered to be the 3- or 4'hydroxyl group as the ¹H NMR resonance of the 5hydroxyl (δ 12.1) proved that this was unsubstituted. A 3-O-glycosylated structure was favoured by the ¹H NMR spectrum in which the glucose H-1 chemical shift at δ 5.76 was more like that of a 3-linked glucose (ca δ 5.44) than that of a 4'-linked glucose (ca δ 4.85 [4]). Furthermore, in the HMBC spectrum, the H-2',6' signal showed connectivity to a carbon signal at 156.5 ppm. This must be the signal of C-2 [5], as the alternative signal at 145.9 ppm shows connectivity (HMQC) to the β -proton of the ferulic acid residue and therefore must represent the β -carbon. The C-2 signal should only appear at ca 156 ppm if the 3hydroxyl is glycosylated [5]. The feruloyl residue is shown to be attached to the 2-hydroxyl of the glucose by the ¹H NMR spectrum in which both the glucose H-1 doublet at δ 5.76 and the coupled (${}^{1}H, {}^{1}H-COSY$) H-2 triplet at $\delta 4.88$ appear markedly downfield from those in flavonol-3-O-glucosides [4]. Such shifts are

204 Short Reports

in accord with those previously observed for 3-*O*-glucosides acylated at the 2-hydroxyl [6]. The ¹³C NMR spectrum is also consistent with this in that both C-1 and C-3 signals appear downfield by about 3 ppm, from signals of the equivalent carbons in quercetin-3-*O*-glucoside [5].

On the basis of the above data the structure 7-O-methylherbacetin 3-O-[2-E-feruloyl- β -D-glucopyranoside] is assigned to 1. This is a new flavonoid glycoside [7] and its structure accounts for its deceptive HPLC behaviour and absorption spectrum.

EXPERIMENTAL

Plant material. Ranunculus sardous plant material was collected from the property of Dr K. Hammett, Massey, Auckland, NZ and identified by Prof. P. Garnock-Jones, Dept of Biological Sciences, Victoria Univ., Wellington, NZ (Voucher specimen: WELTU 16841). The HPLC profile of the EtOH/H₂O extract of the pollen from this plant material was used to identify R. sardous pollen in a NZ bee pollen mix (see ref. [2]). R. sardous pollen hand selected from this bee pollen was used for the present work.

Extraction and isolation. Pollen was extracted as described in ref. [2] and the extract applied in aqueous solution to an RP-18 column. Elution with a gradually increasing proportion of MeOH yielded compound 1 in the last eluted fraction. Compound 1 was further purified on an LH-20 column eluted with MeOH.

HPLC analysis. See ref. [2].

Hydrolyses. Acid hydrolyses were carried out in MeOH-3M HCl (1:1) at 100 for 10 min. HPLC analysis of the products revealed the aglycone with a retention time of 45.6 min and an absorption spectrum with maxima at 276, 310 sh, 329, 387 nm. The sugar was separated from phenolic products by passing the vacuum-dried hydrolysis mix, in water, through an RP-18 column. Sugar identification was by paper chromatography [3]. Alkaline hydrolysis of 1 involved treatment at R.T. with 2 N NaOH in the absence of air, followed by neutralisation with HCl. The acid liberated was identified as ferulic acid by HPLC comparison with an authentic sample.

7-O-Methylherbacetin 3-O-[2-O-E-feruloyl- β -D-glu-copyranoside] (1). HPLC $R_t = 43.5$ min. aglycone

 $R_i = 45.6 \text{ min. UV } \lambda_{\text{max}}^{\text{MeOH}} \text{ nm: 280, 310 sh, 325, 380}$ sh; +NaOMe: 250 sh, 270 sh, 304 sh, 374 (inc); +NaOAc: 280, 310, 325 sh, 380 sh; +AlCl₃ or AlCl₃/HCl: 284, 323, 394 sh. NMR spectra: ¹H NMR (300 MHz, DMSO-d₆): 12.1 (s, 5-OH), 8.10 (d, H-2'6', J = 8.9 Hz), 7.59 (d, H- β -fer, J = 15.8 Hz), 7.30 (s, H-2-fer), 7.09 (dd, H-6-fer, J = 8.1, ca 1 Hz), 6.91 (d, H-3'5', J = 8.9 Hz), 6.78 (d, H-5-fer, J = 8.1 Hz), 6.51 s (H-6), 6.48 (d, H- α -fer, J = 15.8 Hz), 5.76 (d, H-1glu, J = 8.1 Hz), 4.88 (t H-2-glu, J = ca 8.1 Hz), 3.87 (s) and 3.82 (s, OMe); ¹³C NMR (75.5 MHz, DMSOd₆): flavonoid nucleus: 175.1 (C-4), 160.4 (C-4'), 156.5 (C-2), 146-160 (quaternaries, indistinct), 131.3 (C-2'6'), 125.8 (C-8), 123.3 (C-1'?), 115.7 (C-3'5'), 95.7 (C-6), 56.6 (OMe): sugar carbons: 98.3 (C-1), 78.0 (C-5), 74.4 (C-2, C-3), 70.3 (C-4), 60.8 (C-6): feruloyl carbons: 149.5 (C-3), 148 (C-4), 145.9 (C-β,), 123.3 (C-1?, C-6), 115.3/114.8 $(C-\alpha, C-5)$, 111.3 (C-2), 55.9 (OMe).

Acknowledgements—The authors wish to thank Susan Read of NZ Inst. for Ind. Res. and Dev. (IRL) for technical assistance, and Dr Herbert Wong of IRL for running the NMR spectra.

REFERENCES

- Campos, M., Markham, K. R., Mitchell, K. A. and Proenca da Cunha, A., Phytochemical Analysis, in press.
- 2. Markham, K. R. and Campos, M., Phyto-chemistry, 1996, 43, 763.
- Mabry, T. J., Markham, K. R. and Thomas, M. B., The Systematic Identification of Flavonoids, Springer, New York, 1970, pp. 41–250.
- Markham, K. R. and Geiger, H., in *The Flavo-noids—Advances in Research since* 1986, ed. J. B. Harborne. Chapman and Hall, London, pp. 441–497.
- Markham, K. R. and Chari, V. M., in *The Flavo-noids—Advances in Research*, eds J. B. Harborne and T. J. Mabry. Chapman and Hall, London, 1982, pp. 19–134.
- Isobe, T., Fukushige, T. and Noda, Y., Tetrahedron Letters, 1979, 27.
- Williams, C. A. and Harborne, J. B., in *The Flavo-noids—Advances in Research*, ed. J. B. Harborne. Chapman and Hall, London, 1994. pp. 337–385.