

PII: S0084-9422(96)00870-9

FOUR HEPTACYCLIC INDOLES FROM KOPSIA TEOI

TOH-SEOK KAM, K. YOGANATHAN and CHENG-HOCK CHUAH

Department of Chemistry, University of Malaya, 59100 Kuala Lumpur, Malaysia

(Received in revised form 17 October 1996)

Key Word Index—Kopsia teoi; Apocynaceae; leaves; indole alkaloids.

Abstract—Two new indole alkaloids, kopsidines C and D, in addition to kopsidines A and B, were obtained from the leaf extract of *Kopsia teoi*. The structures of the new alkaloids were established by spectral methods. ©1997 Elsevier Science Ltd. All rights reserved

INTRODUCTION

The genus *Kopsia* comprises some 30 species, distributed mainly over south-east Asia, China and India [1, 2]. There are *ca* 18 species distributed over the lowland forest of Peninsular Malaysia. As part of our systematic studies of Malaysian members of this genus [3–11], we investigated the alkaloidal composition of *Kopsia teoi* L. Allorge and have reported in preliminary form the presence of two new heptacyclic alkaloids, kopsidines A and B [4]. We now wish to report the further isolation of two members of this novel class of indoles.

RESULTS AND DISCUSSION

In addition to kopsidine A(1) and kopsidine B(2), whose structures have been discussed previously [4], we isolated two additional compounds belonging to this structural class.

Compound 3, was isolated in small amounts as a light yellow oil. The UV spectrum showed absorptions typical of a dihydroindole chromophore. The mass spectrum of 3 showed a $[M]^+$ at m/z 472 corresponding with the formula C₂₄H₂₈N₂O₈, with other major peaks at m/z 444 [M – CH₂=CH₂]⁺, 427 [M – $CH_2 = CH_2 - OH^+$, 413 [M - CO_2Me^+ and 337 $[M - 2CO_2Me-OH]^+$. The molecular formula of kopsidine C 3 (and kopsidine D 4) indicated that it differs from kopsidine A 1 by replacement of OMe with OH; this is also indicated by the peak at m/z 427 and 337. which are also both common in the mass spectra of kopsidines A and B. Examination of the NMR data (Tables 1 and 2) revealed the structural affinity of kopsidines C and D with the previously reported kopsidines A and B [4]. Thus, in both kopsidines C and D, the signals due to the 15-alkoxy substituent are

1 $R = \alpha$ -OMe

2 R = α -OEt

3 R = α -OH

4 R = β -OH

5

Table 1. ¹H NMR spectral data for compounds 1-4 (270 MHz, CDCl₃)*

Н	1	2	3	4
3	4.47 t (2.5)	4.47 t (2.5)	4.45 t (2.5)	4.35 t (2.5)
5	2.98 m	2.98 m	2.98 m	3.00 m
	3.05 m	3.05 m	3.04 m	3.07 m
6	3.12 m	3.12 m	3.12 m	3.14 m
	1.44 m	1.44 m	1.44 m	1.45 m
9	6.82 d(8)	6.82 d(8)	6.83 d(8)	6.83 d(8)
10	$7.00 \ dd \ (8,7)$	7.01 dd (8,7)	7.02 dd(8,7)	7.02 dd (8, 7)
1	6.83 d (7)	6.83 d (7)	6.82 d(7)	6.79 d(7)
14	2.01 <i>dd</i>	2.00 dd	1.91 <i>dd</i>	1.82 m
	(14, 2.5)	(14, 2.5)	(15, 2.5)	
	2.15 ddd	2.19 ddd	2.39 ddd	2.55 ddd
	(14, 7.5, 2.5)	(14, 7.5, 2.5)	(15, 9, 2.5)	(13, 10, 2.5)
15	3.31 d (7.5)	3.41 d (7.5)	ca 3.80	4.02 dd (10, 5.4)
7	3.72 s	3.74 d(2)	3.70 d(2)	4.20 d(2)
	(4.03, d, 2 Hz)†	` '	,	, ,
8	1.48 m	1.49 m	1.48 m	1.50 m
	2.07 m	2.10 m	2.12 m	2.15 br t (12)
9	1.51 m	1.51 m	1.60 m	$1.12 \ br \ t \ (12)$
	1.73 br t (12)	1.72 br t (12)	1.72 m	1.94 m
!1	3.72 s	3.70 d(2)	3.72 d(2)	3.35 d(2)
	$(4.01, d, 2 \text{ Hz})^{\dagger}$	` '	,	` '
16-OH	6.12 s	6.11 s	6.10 s	6.04 s
Ar–OMe	3.83 s	3.84 s	3.84 s	3.84 s
NCO ₂ Me	3.83 s	3.84 s	3.84 s	3.84 s
CO₂Me	3.79 s	3.80 s	3.80 s	$3.80 \ s$
5-OMe	3.36 s		nomerous	_
15-OCH ₂ CH ₃	menera	3.37 dq (10, 7)	_	
	_	3.71 m		
15-OCH ₂ CH ₃		1.19 (7)	_	

^{*} Assignments based on COSY, LRCOSY and HMQC.

Table 2. ¹³C NMR spectral data for compounds 1-4 (67.8 MHz, CDCl₃)*

C	1	2	3	4	
2	77.7†	76.4	76.4	75.7	
3	86.5	86.4	86.4	86.5	
5	53.4	53.3	53.3	53.1	
6	40.7	40.5	40.6	40.7	
7	58.9	58.7	58.8	58.8	
8	144.0	143.8	143.7	143.6	
9	112.4	112.1	112.3	112.3	
10	124.9	124.8	125.1	125.0	
11	113.2	113.1	112.9	112.8	
12	148.9	148.6	148.8	148.9	
13	128.4	128.1	128.2	128.3	
14	35.8	36.9	40.0	39.5	
15	77.3†	74.4	67.4	68.1	
16	78.5†	77.2	77.3	76.5	
17	79.9	79.9	79.5	77.4	
18	25.7	25.5	25.6	25.2	
19	21.0	20.8	20.2	20.8	
20	37.2	36.8	37.7	38.3	
21	59.5	59.3	59.2	63.7	
Ar-OMe	56.3	56.1	56.2	56.2	
NCO ₂ Me	53.0	52.9	53.1	53.1	
CO ₂ Me	52.1	52.2	52.3	52.3	
CO ₂ Me	171.3	171.2	171.2	171.3	
NCO₂Me	156.1	156.0	156.0	156.0	
15-OMe	56.9	_			
15-OCH ₂ CH ₃	_	64.8			
15-OCH ₂ CH ₃		15.1	_	_	

^{*}Assignments based on HMQC and HMBC.

 $[\]dagger \delta$ in C_6D_6 .

[†] δ in C_6D_6 .

missing in ¹H, as well as ¹³C NMR. Instead, the presence of a 15-OH is indicated by the oxymethine signal at $\delta_{\rm C}$ 67.4 (3) and 68.1 (4). As in the case of kopsidine A, irradiation of the H-15 signal caused NOE enhancement of the H-17 signal, establishing the stereochemistry of the 15-OH as α . In addition, NaBH₄ reduction of kopsidine C 3 gave kopsinganol 5 [12, 13], thus confirming the stereochemical assignment of the 15-OH. Compound 4 had identical EI ms and UV spectrum compared to 3. The ¹H and ¹³C NMR spectral data were also essentially similar, except for changes at positions 15, 17 and 21. Irradiation of the H-21 signal caused NOE enhancement of the H-15 signal and vice versa, whereas no enhancement of H-17 was observed on irradiation of the H-15 signal. These observations indicate that kopsidine D is the C-15 epimer of kopsidine C, as shown in structure 4.

EXPERIMENTAL

Plant material. Details of collection and deposition of voucher specimens are as reported earlier [3].

Extraction and isolation. Extraction of alkaloids was carried out in the usual manner as described in ref. [3]. Alkaloids were isolated by CC, prep. TLC and centrifugal TLC on silica gel. Solvent systems used for CC were CHCl₃-MeOH and Et₂O-EtOAc. Solvent system used for prep. TLC and centrifugal TLC were Et₂O, Et₂O-EtOAc (30:1) and MeOH-CHCl₃. The yields (g kg⁻¹) of alkaloids from the leaf extract were: 1 (0.022), 2 (0.019), 3 (0.0015) and 4 (0.0017).

Compound 1, kopsidine A. $[\alpha]_D = +16^\circ$ (CHCl₃, c 0.21). UV $\lambda_{\text{max}}^{\text{EtOH}}$ nm (log ε): 217 (4.56), 254 (4.10), 281 (3.46), 291 (3.40). EIMS (probe) 70 eV, m/z (rel. int.): 486 [M⁺, C₂₅H₃₀N₂O₈] (4), 458 (3), 455 (3), 441 (1), 427 (15), 425 (12), 369 (5), 337 (9), 130 (7), 107 (16). FABMS, [MH]⁺, m/z 487. ¹H and ¹³C NMR: Tables 1 and 2.

Compound **2**, kopsidine B. $[\alpha]_D = +11^\circ$ (CHCl₃, c 0.073). UV $\lambda_{\text{max}}^{\text{EtOH}}$ nm (log ε) 217 (4.59), 253 (4.14), 281 (3.49), 291 (3.42). EIMS (probe) 70 eV, m/z (rel. int.): 500 [M⁺, C₂₆H₃₂N₂O₈] (6), 472 (3), 455 (2), 441 (4), 427 (12), 425 (11), 383 (7), 337 (5), 130 (4), 107 (3). FABMS, [MH]⁺, m/z 501. H and H C NMR: Tables 1 and 2.

Compound 3, kopsidine C. $[\alpha]_D = +12^\circ$ (CHCl₃, c 0.208). UV λ_{max}^{EtOH} nm (log ε): 217 (4.50), 254 (3.99), 282 (3.28), 289 (3.25). EIMS (probe) 70 eV, m/z (rel. int.):

472 [M $^+$, C₂₄H₂₈N₂O₈] (43), 444 (35), 427 (20), 425 (50), 413 (12), 355 (11), 337 (100), 107 (18). 1 H and 13 C NMR: Tables 1 and 2.

Compound 4, kopsidine D. $[\alpha]_D = -16^\circ$ (CHCl₃, c 0.058). UV $\lambda_{\text{max}}^{\text{EtOH}}$ nm (log ε): 217 (4.36), 254 (3.90), 282 (3.33), 289 (3.30). EIMS (probe) 70 eV, m/z (rel. int.): 472 $[M^+, C_{24}H_{28}N_2O_8]$ (100), 472 (3), 444 (80), 427 (45), 425 (140), 355 (80), 337 (83), 107 (20). 1H and ^{13}C NMR: Tables 1 and 2.

Reduction of 3 to 5. NaBH₄ (0.042 mmol) was added to a stirred soln of 3 (0.04 mmol) in MeOH (10 ml) at 0° . After ca 15 min., H₂O (10 ml) was added and the mixt. extracted with Et₂O (3×10 ml). The extract was then dried (Na₂SO₄) and the solvent evapt. Flash CC over silica gel (MeOH–CHCl₃, 1:99) afforded 14 mg (74%) of 5.

Acknowledgements—We thank the University of Malaya and IRPA for financial support of this work.

REFERENCES

- 1. Markgraf, F., Blumea, 1972, 20, 416.
- Sevenet, T., Allorge, L., David, B., Awang, K., Hadi, A. H. A., Kan-Fan, C., Quirion, J. C., Remy, F., Schaller, H. and Teo, L. E., *Journal of Ethnopharmacology*, 1994, 41, 147.
- 3. Kam, T. S., Yoganathan, K., Chuah, C. H. and Chen Wei, *Phytochemistry*, 1993, **32**, 1343.
- 4. Kam, T. S., Yoganathan, K. and Chuah, C. H., Tetrahedron Letters, 1993, 34, 1819.
- 5. Kam, T. S., Yoganathan, K. and Chuah, C. H., Tetrahedron Letters, 1994, 35, 4447.
- 6. Yoganathan, K., Wong, W. H. and Kam, T. S., Natural Product Letters, 1995, 5, 309.
- 7. Kam, T. S., Yoganathan, K. and Chuah, C. H., Tetrahedron Letters, 1995, 36, 759.
- Kam, T. S., Tan, P. S., Hoong, P. Y. and Chuah,
 C. H., *Phytochemistry*, 1993, 32, 489.
- Kam, T. S., Tan, P. S. and Chen Wei, *Phyto-chemistry*, 1993, 33, 921.
- Kam, T. S., Tan, P. S. and Chuah, C. H., *Phyto-chemistry*, 1992, 31, 2936.
- Kam, T. S. and Tan, P. S., Phytochemistry, 1990, 29, 2321.
- 12. Tan, G. H., Lim, T. M. and Kam, T. S., Tetrahedron Letters, 1995, 36, 1327.
- Kam, T. S. and Yoganathan, K., Phytochemistry, 42, 539.