

PII: S0031-9422(97)00038-1

# STRUCTURE OF NIMONOL FROM FRESH WHOLE GREEN LEAVES OF AZADIRACHTA INDICA

G. SURESH\*, N. S. NARASIMHAN\* and N. PALANI

Centre for Agrochemical Research, SPIC Science Foundation, 110, Mount Road, Madras 600 032, India

(Received 31 May 1996)

Key Word Index—Azadirachta indica; nimonol; nimocinol.

Abstract—Nimonol was obtained from the fresh green whole leaves of Azadirachta indica and its structure has been reassigned on the basis of COSY, NOESY and 'H NMR spectral data. 6-Acetylnimonol was identified as 6-acetoxyazadirone and dihydronimonol was shown to be identical to isomeldenin. The mp and 'H NMR spectra of 6-acetylnimocinol were markedly different from those of 6-acetoxyazadirone showing that nimocinol and nimonol have different structures. ©1997 Elsevier Science Ltd. All rights reserved

#### INTRODUCTION

Different parts of the Indian neem tree, Azadirachta indica A. Juss, have been used in traditional medicine [1] and in agriculture [2] in India. It was observed that swarms of the desert locust Schistocerca americana gregaria, would repeatedly settle on neem trees, but would fly away without feeding on the leaves [3]. Presumably the neem leaves contained repellent and antifeedant compounds. Although a number of compounds have been isolated from neem leaves [4], little is known of their bioactivities. As we had a ready access to neem leaves, we undertook a systematic investigation of the neem leaf chemistry.

### RESULTS AND DISCUSSION

Soaking of the fresh, green, uncrushed whole leaves of Azadirachta indica in n-hexane for 18 hr provided a mixture of compounds in the hexane extract. Solvent partitioning and chromatography of the hexane extract yielded nimonol (1),  $C_{28}H_{36}O_5$ , and isomeldenin [5].

The <sup>1</sup>H NMR signals of nimonol were at  $\delta$  7.39 m, 7.26 m, 6.29 m ( $\beta$ -substituted furan), 7.12 d, J = 10.06 Hz; 5.90 d, J = 10.06 Hz (-CH = CH-CO-), 5.42 dd, J = 1.82, 2.84 Hz (C = CH-CH<sub>2</sub>), 2.05 (CH<sub>3</sub>CO) 1.41, 1.31, 1.27, 1.14, 0.82 (five Mes). The <sup>1</sup>H NMR spectrum also had three methine proton signals at  $\delta$  2.21 d, J = 11.65 Hz (-CH-); 4.38 dd, J = 11.65 Hz and 2.37 (-CHOH) and 5.36 d, J = 2.37 Hz (-CHOAc-). The coupling connectivity of these methine protons

proton at C-17 having the  $\beta$ -configuration (at  $\delta$  2.83 dd, unresolved dd; benzylic type; most deshielded of the methine protons; in 1,3-diacetyl vilasinin [9] it is

at  $\delta$  2.83 dd, J = 11.5, 7.5 Hz and in  $4\alpha$ ,  $6\alpha$ -dihydroxy

was seen in the COSY spectrum, where the proton at

 $\delta$  2.21 had cross peaks with that at  $\delta$  4.38, the proton

at  $\delta$  4.38 with those at  $\delta$  2.21 and  $\delta$  5.3 and the proton

at  $\delta$  5.36 with that at  $\delta$  4.38. The COSY spectrum

thus indicated the presence of the group -CH-CHOH-

CHOAc (-CH-CHOH-trans, -CHOH-CHOAc cis on

a cyclohexane ring system). The molecular formula

and the spectral data then indicated that nimonol was

a tetranortriterpenoid. From an NOE experiment it

was observed that in the NOESY spectrum, the H on

the carbon bearing a secondary alcohol had NOE

interaction with three Me groups at  $\delta$  1.41, 1.27 and

1.14. This was possible only in structure 1, where the

H at C6, which had  $\beta$ -configuration, was in close

proximity to methyl groups located at C-4, C-8 and C-10. In several limonoids, e.g. azadirone [6], dihydroazadirone [6] and 6-acetoxyazadirone [7], which had (i) intact ABCD-rings; (ii) no substituent in the C-ring; and (iii) an α-oriented furan ring at C-17 and also in 4α,6α-dihydroxy A-homoazadirone [8] which had an unsubstituted C-ring and an α-oriented furan ring at C-17, the most shielded methyl group was around  $\delta$  0.8. This signal has indeed been assigned [8] in 4α,6α-dihydroxy-A-homoazadirone to the methyl C-13, which was in the  $\alpha$ -orientation and cis to the furan ring at C-17. Since compound 1 also had a signal at  $\delta$  0.82, it was surmised that the methyl at C-13 and the furan at C-17 were also in the cis-orientation. The NOE was in agreement with this. Thus, the methyl at C-13 had an NOE interaction with the  $\beta$ -proton (at  $\delta$ 6.29) of the furan ring, but no interaction with the

<sup>\*</sup> Author to whom correspondence should be addressed.

A-homoazadirone [8] it is at  $\delta$  2.85 dd, J = 9.0, 9.5 Hz). Nimonol was then assigned the complete structure as in 1. The stereostructure is as in 2, which also shows the NOE interactions (NOESY).

The structure corresponding to 1 has been assigned by Siddiqui *et al.* [10] to nimocinol, the tetranor-triterpenoid from the fruits of *Melia indica*. There were, however, differences in the <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of nimonol and nimocinol (Tables 1 and 2). In particular, nimonol had, in the <sup>1</sup>H NMR, the most shielded methyl group protons at  $\delta$  0.82, while in nimocinol this was at  $\delta$  1.07. In the <sup>13</sup>C NMR spectrum nimonol had a methyl signal at  $\delta$  31.87 while nimocinol had one at  $\delta$  14.04. The two compounds were therefore different.

Siddiqui et al. [10] deduced the structure of nimocinol on the basis of a comparison of the NMR spectrum of the acetate of nimocinol with that of 6-acetoxy azadirone [7] and it was claimed that they were identical. However, the reported mp of 6-acetoxyazadirone was 186–188° [7], while acetyl nim-

ocinol had mp 107-108° [10]. Furthermore, when the chemical shift values, as reported by the authors, were checked, it was noticed that there was a serious difference. Thus, the acetate of nimocinol had the most shielded methyl signal at  $\delta$  1.12, while for 6-acetoxy azadirone it was at  $\delta$  0.81. On the other hand, when nimonol was converted to its acetate, the product had mp. 182-184° and the most shielded methyl signal at  $\delta$  0.81, as in 6-acetoxyazadirone. The other <sup>1</sup>H NMR signals of the acetate (Table 3) of nimonol also matched with those of 6-acetoxy azadirone. This conclusively established that it was the acetate of nimonol, which was identical with 6-acetoxyazadirone and not the acetate of nimocinol. Structure 1, then represented nimonol and not nimocinol. This was further confirmed when nimonol, on hydrogenation, gave a product which had a 1H NMR spectrum identical with that of isomeldenin.

It is possible that nimocinol has the furan at C-17 in the  $\beta$ -orientation and that it is 17-epi-nimonol. This, if proved correct, would be of great interest since the

| Table | 1  | $^{1}H$ | NMR    | spectral | data | of n  | imono  | 171 | and | nim     | ocinal | [10] |
|-------|----|---------|--------|----------|------|-------|--------|-----|-----|---------|--------|------|
| Lauic | 1. | 11      | INIVIT | SUCCUIA  | uala | OI II | шионка |     | anu | 1111111 | OCHIOL | 1101 |

| Proton       | Nimonol                   | Nimocinol [10]                   |
|--------------|---------------------------|----------------------------------|
| H-1          | 7.12, d, J = 10.06        | 7.06, d, J = 10.0                |
| H-2          | 5.90, d, J = 10.06        | 5.82, d, J = 10.0                |
| H-5          | 2.21, d, J = 11.65        | 2.17, d, J = 11.25               |
| H-6          | 4.38, dd, J = 11.65, 2.37 | 4.30, dd                         |
| H-7          | 5.36, d, J = 2.37         | $5.30, d, J 6\beta 7\beta = 2.5$ |
| H-15         | 5.42, dd, J = 1.82, 2.84  | 5.37, m                          |
| <b>I</b> -17 | 2.83, unresolved dd       | Not indicated                    |
| H-21*        | 7.26, m                   | 7.30, m                          |
| H-22         | 6.29, m                   | 6.22, m                          |
| H-23         | 7.39, m                   | 7.18, m                          |
| OAc          | 2.05                      | 1.97, s                          |
| ЭH           | Not identified            | 2.50, br m                       |
| C-methyls    | 0.82                      | 1.07                             |
|              | 1.14                      | 1.18                             |
|              | 1.27                      | 1.21                             |
|              | 1.31                      | 1.25                             |
|              | 1.41                      | 1.35                             |

<sup>\*</sup> NOE interaction is between Me at 13 and furan proton at  $\delta$  7.26. The signal at  $\delta$  7.26 is then assigned to H-21.

Table 2. <sup>13</sup>C NMR spectral data of nimonol (1) and nimocinol [10]

| Carbon             | Nimonol | Nimocinol [10] |
|--------------------|---------|----------------|
| C-1                | 157.40  | 157.30         |
| C-2                | 126.14  | 126.10         |
| C-3                | 205.96  | 205.90         |
| C-4                | 40.51   | 40.50          |
| C-5                | 49.88   | 49.80          |
| C-6                | 68.08   | 68.00          |
| C-7                | 79.08   | 79.00          |
| C-8                | 45.43   | 45.43          |
| C-9                | 37.13   | 37.15          |
| C-10               | 43.11   | 43.11          |
| C-11               | 16.39   | 16.30          |
| C-12               | 32.72   | 33.60          |
| C-13               | 47.08   | 47.08          |
| C-14               | 158.53  | 158.00         |
| C-15               | 119.55  | 119.55         |
| C-16               | 34.30   | 34.32          |
| C-17               | 51.62   | 51.64          |
| C-20               | 124.37  | 124.36         |
| C-21               | 142.57  | 142.55         |
| C-22               | 110.94  | 110.93         |
| C-23               | 139.64  | 139.63         |
| CH <sub>3</sub> CO | 172.02  | 171.97         |
| CH <sub>3</sub> CO | 21.16   | 21.20          |
| C-Me               | 31.87   |                |
|                    | 27.08   | 27.07          |
|                    | 20.84   | 20.79          |
|                    | 20.79   | 20.22          |
|                    | 20.23   | 19.64          |
|                    |         | 14.04          |

occurrence of a furan in the  $\beta$ -orientation is unknown, except when a carbonyl group is present at C-16. It is also possible that the hydroxyl and acetyoxyl substitution pattern is different in nimocinol.

#### **EXPERIMENTAL**

Fresh, uncrushed, green neem leaves (1 kg) were dipped in *n*-hexane (15 l) for 18 hr and the decanted *n*-hexane extract concd to 1 l in vacuo. The hexane extract was partitioned with 95% MeOH. The MeOH extract was concd to dryness in vacuo leaving a residue (6 g). CC of the MeOH residue on silica (70–300 mesh), with 15% EtOAc in *n*-hexane yielded, in frs 17–23, nimonol (1.727 g),  $C_{28}H_{36}O_5$ , mp 174°; [ $\alpha$ ]<sub>D</sub> + 60.78° (c 1.02; CHCl<sub>3</sub>); <sup>1</sup>H NMR and <sup>13</sup>C NMR: Tables 1 and 2; Found C 73.78, H 8.07; HRMS 452.25688;  $C_{28}H_{36}O_5$  requires C 73.34, H 7.96; HRMS 452.25628.

Frs 24–30 yielded isomeldenin (247 mg) mp  $152^{\circ}$  (lit.  $148-152^{\circ}$ ) [5];  $[\alpha]_D + 90^{\circ}$  (c 1, CHCl<sub>3</sub>) (lit + 100); <sup>1</sup>H NMR (CDCl<sub>3</sub>) 7.30, m (H-21), 7.17, m (H-23), 6.20, m (H-22), 5.34, m (H-15), 5.26, d, J = 2.93 Hz (H-7), 4.16, dd, J = 2.93, 11.23 Hz (H-6), 2.05, d, J = 11.23 Hz (H-5), 2.00 (OAc), 1.26, 1.22, 1.13, 0.77, 0.74 (five methyls), 2.63–2.74 (m), 2.19–2.39 (m), 1.45–1.85 (m); <sup>13</sup>C NMR (CDCl<sub>3</sub>) 219.35(C-3), 172.28 (CH<sub>3</sub>CO), 158.88(C-14), 142.78(C-21), 139.89(C-23), 124.78(C-20), 119.75(C-15), 111.27(C-22), 79.47(C-7), 68.39(C-6), 51.79(C-17), 47.37, 47.02, 43.09, 41.56, 38.63, 37.98, 34.53, 33.09, 32.98, 31.86, 31.81, 26.39, 21.56, 20.82, 19.52, 16.86, 16.54.

Acetylation of nimonol. A soln of nimonol (100 mg) in pyridine (1 ml) and Ac<sub>2</sub>O (1 ml) was kept at room temp. overnight. Usual work-up, followed by chromatography (silica gel, 10% EtOAC in *n*-hexane as eluent), gave nimonol acetate (60 mg, mp 182–184° (lit. [7] mp 186–88°). <sup>1</sup>H NMR was identical with that of 6-acetoxyazadirone.

Hydrogenation of nimonol. A soln of nimonol (50 mg) in MeOH (3 ml) was stirred in a hydrogen atmosphere at room temp and atmos. pres. in the presence of 10% Pd/C (5 mg) for about 20 min. Filtration

Table 3. <sup>1</sup>H NMR spectral data of nimonol acetate, 6-acetoxyazadirone and nimocinol acetate [10]

| Proton        | Nimonol acetate      | 6-Acetoxyazadirone | Nimocinol acetate [10] $7.10, d, J = 10.0$ |  |  |
|---------------|----------------------|--------------------|--------------------------------------------|--|--|
| H-1           | 7.14, d, J = 9.5     | 7.14, <i>d</i>     |                                            |  |  |
| H-2           | 5.92, d, J = 9.5     | 5.93, d            | 5.95, d, J = 10.0                          |  |  |
| H-5           | Not resolved         | Not indicated      | 2.25, d, J = 11.25                         |  |  |
| H-6           | 5.40, bs overlapping | 5.42, <i>dd</i>    | 5.41, <i>dd</i>                            |  |  |
| H-15          | 5.40, bs             | 5. <b>4</b> 0, d   | 5.38, m                                    |  |  |
| H-7           | 5.47, bs             | 5.47, d            | 5.45, m                                    |  |  |
| H-21*         | 7.38, m              | 7.38, m            | 7.32, m                                    |  |  |
| H-22          | 6.28, m              | 6.28, m            | 6.20, m                                    |  |  |
| H-23*         | 7.24, m              | 7.25, m            | 7.11, m                                    |  |  |
| OAc           | 2.01, s              | 2.00, s            | 2.00, s                                    |  |  |
| OAc           | 2.05, s              | 2.04, s            | 2.04, s                                    |  |  |
| Me            | 0.81, s              | 0.81, s            | 1.12, s                                    |  |  |
| $2 \times Me$ | 1.19, s              | 1.18, s            | 1.17, s                                    |  |  |
| Me            | 1.27, <i>s</i>       | 1.26, s            | 1.25, s                                    |  |  |
| Me            | 1.34, <i>s</i>       | 1.33, s            | 1.31, s                                    |  |  |

<sup>\*</sup> The assignments may be reversed.

810 G. Suresh et al.

and removal of solvent, followed by chromatography (silica gel, 20% EtOAc in *n*-hexane as eluent) gave dihydronimonol (21 mg), mp 150–152° (lit. mp 148–152°). <sup>1</sup>H NMR was identical with that of isomeldenin [5].

Acknowledgements—Thanks are due to Prof. T. R. Govindachari, Adviser, SPIC Science Foundation for encouragement and to the Department of Biotechnology, Govt of India for funding a project on antifungal compounds from the Meliaceae and Simaroubaceae.

## REFERENCES

- Arora, R. K., in Neem Research and Development. Society of Pesticide Science, India, 1993, p. 33.
- Singh, R. P., in Neem Research and Development. Society of Pesticide Science, India, 1993, p. 109.

- Schmutterer, H., in Natural Pesticides from the Neem Tree (Azadirachta indica A. Juss.). GTZ, Eschborn 1, 1980 p. 21.
- Devakumar, C. and Sukh Dev, in Neem Research and Development. Society of Pesticide Science, India, 1993, p. 63.
- 5. Pacharpurkar, R. V., Kornule, P. M. and Narayanan, C. R., *Chemistry Letters*, 1974, 4, 357.
- Lavie, D., Levy, E. C. and Jain, M. K., Tetrahedron, 1971, 27, 3927.
- Saikia, B., Kataky, J. C. S., Mathur, R. K. and Baruah, J. N., *Indian Journal of Chemistry*, 1978, 16B, 1042.
- 8. Bruhn, A., Bokel, M. and Kraus, W., Tetrahedron Letters, 1984, 25, 3691.
- 9. Kraus, W. and Cramer, R., Liebigs Annals of Chemistry, 1981, 2381.
- Siddiqui, S., Siddiqui, B. S., Faizi, S. and Mahmood, T., Phytochemistry, 1984, 23, 2899.