

PII: S0031-9422(97)00037-X

BIOTRANSFORMATION OF (-)-CIS-MYRTANOL AND (+)-TRANS-MYRTANOL BY PLANT PATHOGENIC FUNGUS, GLOMERELLA CINGULATA

MITSUO MIYAZAWA,* YASUHIRO SUZUKI and HIROMU KAMEOKA

Department of Applied Chemistry, Faculty of Science and Engineering, Kinki University, Kowakae, Higasiosaka-shi, Osaka 577, Japan

(Received in revised form 30 September 1996)

Key Word Index—Glomerella cingulata; plant pathogenic fungus; (-)-cis-myrtanol; (+)-trans-myrtanol; (3S)-3-hydroxy-cis-myrtanol; 4-oxo-cis-myrtanol; (4R)-4-hydroxy-cis-myrtanol; 5-hydroxy-cis-myrtanol; [1R, 4R, 5S]-thujane-7, 10-diol; 3-oxo-trans-myrtanol; 9-hydroxy-trans-myrtanol; 4-oxo-trans-myrtanic acid; 5-hydroxy-trans-myrtanic acid; biotransformation.

Abstract—The biotransformation of the diastereoisomers, (-)-cis-myrtanol and (+)-trans-myrtanol, by Glomerella cingulata has been investigated. (-)-cis-Myrtanol was initially converted to (3S)-3-hydroxy-cis-myrtanol, (4R)-4-hydroxy-cis-myrtanol, 5-hydroxy-cis-myrtanol and [1R, 4R, 5S]-thujane-7, 10-diol having the cyclopropane ring. (4R)-4-Hydroxy-cis-myrtanol was further converted to 4-oxo-cis-myrtanol. By comparison (+)-trans-myrtanol was converted to 3-oxo-trans-myrtanol, 9-hydroxy-trans-myrtanol, 4-oxo-trans-myrtanic acid and 5-hydroxy-trans-myrtanic acid. The structures of the metabolic products were determined by spectral methods. © 1997 Elsevier Science Ltd. All rights reserved

INTRODUCTION

Terpenoids are widely distributed in the plant kingdom and possesses a range of biological activities. We are interested in derivatization of terpenoids by biotransformation using a plant pathogenic fungus. We have demonstrated the microbial transformation of (+)-cedrol [1], 1,8-cineole [2], (-)- α -bisabolol [3], (-)-globulol [4], (+)-ledol [4], (-)-nopol [5], (+) and (-)-camphorquinones [6], racemic *cis*- and *trans*-linalool oxide-pyranoid [7], karahanaenone [8], (\pm) -2-methylcyclohexanone [9], (\pm) -3-methylcyclohexanone [9] by the plant pathogenic fungus, *Glomerella cingulata*.

In this paper, we describe the metabolism of (-)-cis-myrtanol (1) and (+)-trans-myrtanol (2) which exhibit activity as an insect repellent for lice [10]. These compounds are diastereomers, and have the same fundamental skeleton of (-)-nopol [5].

RESULTS AND DISCUSSION

The metabolism of the substrates 1 and 2 by G. cingulata was followed for 16 days. The substrates and metabolites were detected by TLC and GC analysis

which revealed that compounds 1 or 2 were converted to five and four metabolic products, respectively (Figs 1 and 2). In order to determine the structures of the metabolites a large scale 16-day incubation of 1 (4.32) g) with G. cingulata was conducted. After incubation, the culture medium was extracted and the metabolites were purified by silica gel chromatography to give compounds 1-1 to 1-5. The structures of the metabolites were determined from their ¹H and ¹³C NMR, IR and mass spectra. The major compound 1-1 had a molecular formula C₁₀H₁₈O₂ as determined from the high resolution mass spectral data of the diacetate 1-1a. The NMR spectrum showed a hydroxyl group at C-3. In order to determine the absolute configuration of the C-3 secondary hydroxyl group, Mosher's (1H) method was applied [12, 13]. The metabolite 1-1 was esterified with (R)- and (S)-MTPA, after protection of the hydroxyl group on C-10 by TBDMS, as described in the Experimental [11]. $\Delta \delta (\delta_{\rm S} - \delta_{\rm R})$ values for the MTPA ester of 1-1 are given in the Experimental. These results showed that C-3 had the Sconfiguration and therefore 1-1 was identified as (3S)-3-hydroxy-cis-myrtanol.

The EI-mass spectrum of 1-2 showed [M]⁺ at m/z 168, corresponding to the molecular formula $C_{10}H_{16}O_2$. The IR and ^{13}C NMR spectra showed the presence of a carbonyl group (IR ν_{max} : 1702 cm⁻¹, δ_C 214.0). By comparison with the coupling constant ($J_{2,3} = 10.8$ Hz) of H-2 of *cis*-verbanone [15], the car-

^{*} Author to whom correspondence should be addressed.

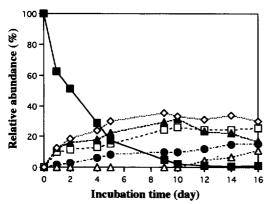


Fig. 1. Biotransformation of (-)-cis-myrtanol (1) by G. cingulata. $\blacksquare = (-)$ -cis-myrtanol (1), $\diamondsuit = (3S)$ -(-)-3-hydroxy-cis-myrtanol (1-1), $\triangle = (-)$ -4-oxo-cis-myrtanol (1-2), $\triangle = (4R)$ -(-)-4-hydroxy-cis-myrtanol (1-3), $\square = (-)$ -5-hydroxy-cis-myrtanol (1-4), $\bullet = [1R, 4R, 5S]$ -thujane-7,10-diol (1-5).

bonyl group was established to be at the C-4 position. The metabolic product **1-2** was thus identified as to 4-oxo-*cis*-myrtanol.

The compound 1-3 had the molecular formula $C_{10}H_{18}O_2$ based on the HR mass spectrum of diacetate 1-3a. The NMR spectrum indicated the existence of a hydroxyl group which was located at C-4. The configuration of the introduced hydroxyl group was revealed by the same method as employed with 1-1. $\Delta \delta$ values are shown in the Experimental and the absolute configuration at C-4 was identified as R. Thus, metabolite 1-3 was identified as (4R)-4-hydroxy-cis-myrtanol. In the course of the metabolism of compounds 1-2 and 1-3, the increase of 1-2 was related to the decrease of 1-3 (Fig. 1). Therefore, this indicated that 1-2 was the secondary metabolic product formed from 1-3 by G. cingulata.

Compound 1-4 had a molecular formula $C_{10}H_{18}O_2$ established by the HR mass spectrum of the diacetate 1-4a. The ¹H NMR and ¹³C NMR spectra showed the existence of a hydroxyl group which was introduced at C-5. Thus, the metabolite 1-4 was a diol, and it was identified as 5-hydroxy-cis-myrtanol.

In the ¹H NMR spectrum of 1-5, the proton signal shifted at $\delta_{\rm H}$ 0.34 and $\delta_{\rm H}$ 0.69, respectively, and they had the same coupling constant (4.8 Hz). In the ¹³C NMR spectrum, a methylene carbon appeared in high magnetic field ($\delta_{\rm C}$ 11.0). This result indicated that compound 1-5 was composed of a thujane skeleton. The ¹³C NMR spectrum showed the existence of a primary alcohol and a tertiary alcohol, and the 'H NMR spectrum indicated that they were located at C-10 and C-7. By comparison with 4α -H-thujane-3 β -ol [14], the coupling constant (7.5 Hz) between H-3 (β position) and H-4 of 1-5 established the absolute Rconfiguration of C-4. In addition, the coupling constant (0 Hz) between H-4 and H-5 of 1-5 indicated that the absolute configurations of C-1 and C-5 were R and S, respectively. Thus, the metabolic product 1-5 was confirmed to be [1R, 4R, 5S]-thujane-7,10-diol.

The microbial transformation of 2 was investigated by incubation of 2 (4.00 g) with G. cingulata on a large scale for 16 days. After incubation, the culture was extracted as described in the Experimental. Compounds 2-1-2-4 were obtained from the extract. The mass spectrum of compound 2-1 showed an ion at m/z168 [M]+. The IR and ¹³C NMR spectra showed the existence of a carbonyl group (IR ν_{max} : 1706 cm⁻¹, δ_{C} : 216.0) as a ketone. From the comparison with the ¹³C NMR signal of 2 and the coupling constant of H-2 of trans-pinocamphone [15], the position of the ketone was established at C-3. In the ¹H NMR spectrum of 2-1, the signal of the methylene proton which was adjoining the hydroxy group shifted in the wide range (δ 3.54 and δ 3.90). It seems that this effect was caused by the immovability by intramolecular hydrogen bond between hydroxyl proton and ketone. This result supported the existence of a ketone at C-3. Thus, 2-1 was determined to be 3-oxo-trans-myrtanol.

The compound 2-2 had a molecular formula $C_{10}H_{18}O_2$ based on HRMS of the diacetate 2-2a. The IR spectrum contained a C-O absorption band (1013 cm⁻¹) due to the presence of a primary alcohol. The ¹H NMR spectrum indicated the absence of one methyl group and the presence of one hydroxyl group which was located at C-9 by the ¹³C NMR spectra of 2-2 and 2-2a. Thus, 2-2 was elucidated to be 9-hydroxy-transmyrtanol.

The metabolites from the acidic part were isolated as their methylesters (2-3b and 2-4b) after methylation with diazomethane. The IR and 13 C NMR spectra of 2-3b (molecular formula: $C_{11}H_{16}O_3$ ([M] $^+$ at m/z 196)), showed the existence of two carboxyl groups (IR v_{max} : 1728, 1734 cm $^{-1}$, δ_C : 211.4, 174.9). In the 1 H NMR spectrum there was no signal corresponding to a primary alcohol. Consideration of the DEPT and 13 C NMR spectra and the coupling constant of H-2 of 2-3c showed that 2-3 was a compound in which the C-10 hydroxyl group was oxidized to a carboxylic acid and there was a carbonyl group at C-4. Therefore, metabolite 2-3 was identified as 4-oxo-*trans*-myrtanic acid.

The other methyl ester **2-4b** had the formula $C_{11}H_{18}O_3$ based upon the acetate **2-4ab** which had a molecular formula $C_{13}H_{20}O_4$ determined by FAB-mass spectrometry (m/z 241, [MH]⁺). The IR and ¹³C NMR spectra of **2-4b** showed the presence of a carboxyl group (IR v_{max} : 1730 cm⁻¹, δ_C : 176.5) and a hydroxyl group (IR v_{max} : 3418 cm⁻¹ (O-H)). In the ¹H NMR spectrum of **2-4b**, the signal corresponding to a primary alcohol of **2** had disappeared. The ¹³C NMR spectrum supported the existence of a hydroxyl group at C-5 and a carboxyl group at C-10. From these spectra, the metabolite **2-4** was elucidated to be 5-hydroxy-*trans*-myrtanic acid.

The metabolic products produced from 1 and 2 by G. cingulata are shown Schemes 1 and 2. The metabolism of 1 and 2 involved oxidations. Both substrates were oxidized at C-3, C-4 and C-5 whereas oxidation at C-9 and C-10 was found only with 2. A thujane

Scheme 1. The metabolic products of (-)-cis-myrtanol (1) by G. cingulata.

Scheme 2. The metabolic products of (+)-trans-myrtanol (2) by G. cingulata.

derivative was obtained from 1; the formation of a thujane from a pinane is very rare (Scheme 3).

With regard to the oxidation at C-10, compound 2 was easily oxidized to a carboxylic acid, but no such oxidation occurred in 1. Considering the distance between C-10 and the geminal methyl group, the distance in 1 was much longer than that in 2 (Fig. 3.) Therefore, the position of the geminal methyl group had an effect on the specificity of the reaction and this was also seen when a hydroxyl group was introduced into 1-1 and 1-3 as the hydroxyl group introduced faced the *trans*-position of the geminal methyl group. This situation also applied to the production of the metabolite (-)-(4R)-4-hydroxynopol from (-)-nopol [5].

EXPERIMENTAL

General. (-)-cis-Myrtanol (1) and (+)-trans-myrtanol (2) were purchased from Fluka Chem. ¹H and ¹³C NMR spectra were measured in CDCl₃ or CD₃OD with TMS as int. standard at 270.05 and 67.80 MHz, respectively. MS: QP-1000A (Shimazu), 20 eV (ion voltage), 250° (ion source); GC: GC-2D (Shimazu), FID, 1 ml min⁻¹ (flow rate), OV-1 (0.25 mm × 25 m), capillary column at 80–240° (2° min⁻¹); TLC: silica gel 60 F₂₅₄ pre-coated (layer thickness 0.25 mm, Merck); C.C.: silica gel developed with *n*-hexane–EtOAc gradient and CHCl₃–EtOAc gradient.

Preculture of G. cingulata. Spores of G. cingulata (gift from Prof. M. Hyakumachi, Gifu University)

Scheme 3. Probable scheme for the formation of 1-5.

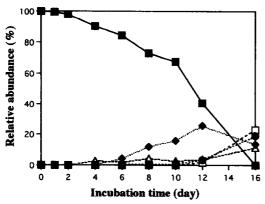


Fig. 2. Biotransformation of (+)-trans-myrtanol (2) by G. cingulata. $\blacksquare = (+)$ -trans-myrtanol (2), $\spadesuit = (+)$ -3-oxotrans-myrtanol (2-1), $\triangle = (+)$ -9-hydroxy-trans-myrtanol (2-2), $\square = (+)$ -4-oxo-trans-myrtanic acid (2-3), $\spadesuit = (+)$ -5-hydroxy-trans-myrtanic acid (2-4).

which had been preserved at low temp were inoculated into sterilized culture medium (sucrose 3.75 g, glucose 3.75 g, polypeptone 1.25 g, MgSO₄ \cdot 7H₂O 0.125 g, KCl 0.125 g, K₂HPO₄ 0.25 g, FeSO₄ \cdot 7H₂O 0.0025 g for 250 ml H₂O) in a shaking flask and shaken at 28° for 2 days. The mycelia were then transplanted on to petri dishes which contained 16 ml culture media (pH 7.2) and were incubated at 28° without shaking for 3 days.

Biotransformation of (-)-cis-myrtanol (1). Compound 1 (4.32 g) was dissolved in 27 ml of EtOH and 100 μ l of this soln added per petri dish to the culture medium (it was established that EtOH did not adversely affect 1 or the mycelia). The cultures of G. cingulata were incubated under the same conditions as above for 16 days.

Isolation of the metabolic products (1-1-1-4). After incubation, the culture media was collected, saturated with NaCl, and extracted with CH₂Cl₂ and EtOAc. The mycelia were also collected and extracted with CH₂Cl₂ for 3 days. Both extracts were combined, and the solvent was evapd under red. press. The extract (4.10 g) was dissolved in CH₂Cl₂ and washed with 5% aq. NaHCO₃, and sepd into a neutral (3.00 g) and an acid part (0.25 g).

Biotransformation of (+)-trans-myrtanol (2). Compound 2 (4.00 g) was dissolved in 25 ml of EtOH and $100~\mu l$ of this soln added per a petri dish to the culture medium (EtOH did not adversely affect 3 or the myce-

lia). The *G. cingulata* cultures were further incubated under the same conditions for 16 days.

Isolation of the metabolic products (2-1-2-4). After incubation, the culture media was collected, saturated with NaCl, and extracted with CH₂Cl₂ and EtOAc. The mycelia were also collected and extracted with CH₂Cl₂ for 3 days. Both extracts were combined, and the solvent was evapd under red. press. The extract (4.70 g) was dissolved in CH₂Cl₂ and washed with 5% aq. NaHCO₃, and sepd into a neutral (2.10 g) and an acid part (1.87 g).

Metabolites from (—)-cis-myrtanol (1). The neutral fr. (3.00 g) was purified by silica gel CC with hexane–EtOAc and CHCl₃–EtOAc gradient repeatedly to give the metabolic products 1-1 (648 g), 1-2 (240 mg), 1-3 (360 mg), 1-4 (552 mg) and 1-5 (336 mg). The R_i on GC and R_f value on TLC were as follows: 1-1 (25.8 min, 0.38), 1-2 (28.6 min, 0.48) 1-3 (28.9 min, 0.32), 1-4 (25.8 min, 0.48), 1-5 (22.2 min, 0.46). n-Hexane–EtOAc (1:9) was used as the developing solvent for TLC.

(3S)-3-Hydroxy-cis-myrtanol (1-1). Crystals; mp 62.4–68.5°; [α]_D²⁰ + 6.79° (CHCl₃; c 0.45). EIMS m/z (rel. int.): 137(3), 134(3), 127(4), 121(7), 91(8), 82(64), 70(base), 55(71), 43(55). IR $\nu_{\rm max}$ cm⁻¹: 3362, 2922, 1656, 1471, 1365, 1149, 1085, 1035. ¹H NMR and ¹³C NMR: see Tables 1 and 5.

3,10-Diacetate of 1-1 (1-1a). Compound 1-1 (35 mg) was acetylated in the usual manner to yield 1-1a (40 mg), oil; $[\alpha]_D^{20} + 17.2^\circ$ (CHCl₃; c 1.0): HRMS m/z: 194.1287 ([M–CH₃CO₂H]⁺, calcd for C₁₂H₁₈O₂: 194.2750); EIMS m/z (rel. int.): 152(4), 135(3), 134(31), 119(32), 91(13), 82(33), 67(7), 43(base). IR $\nu_{\rm max}$ cm⁻¹: 2929, 1737, 1471, 1365, 1244, 1152, 1035, 606. ¹H NMR and ¹³C NMR: see Tables 1 and 5.

4-Oxo-cis-myrtanol (1-2). Crystals; mp 54.0–59.8°; $[\alpha]_{20}^{20}$ – 38.78° (CHCl₃; c 0.9). EIMS m/z (rel. int.): 168 [M]+(3), 153 [M–CH₃]+(3), 137 [M–CH₂OH]+(23), 109(17), 95(52), 83(base), 55(77), 41(24): IR $v_{\rm max}$ cm⁻¹: 3411, 2943, 1702, 1468, 1248, 1198, 1092, 1039(C–O). ¹H NMR and ¹³C NMR: see Tables 1 and 5.

(4R)-4-Hydroxy-cis-myrtanol (1-3). Crystals; mp 76.8–82.8°; $[\alpha]_D^{20}-16.30^\circ$ (CHCl₃; c 1.0). EIMS m/z (rel. int.): 155(5), 139(2), 137(4), 121(3), 110(9), 85(base), 69(26), 43(27). IR $\nu_{\rm max}$ cm⁻¹: 3326, 2922, 1656, 1471, 1365, 1258, 1046, 1040. ¹H NMR and ¹³C NMR: see Tables 1 and 5.

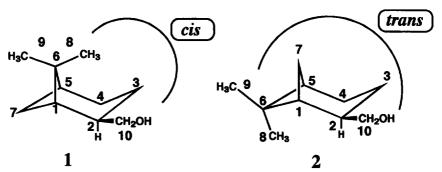


Fig. 3. The configuration of (-)-cis-(1) and (+)-trans-myrtanol (2).

Table 1. H NMR spectral data for (-)-cis-myrtanol (1) and metabolites and derivatives (δ, TMS, in CDCl₃ at 270.05 MHz)

Н	1	1-1	1-1a	1-2	1-3
1	2.02° ddd (6.5, 4.8, 1.8)	1.89 dt (5.5, 5.5, 1.8)	2.01 dt (5.8, 5.8, 2.0)	2.39 ddd (6.5, 5.0, 2.0)	2.03–2.09 m
2	1.85–1.98 m	2.13 <i>ddt</i> (10.0, 5.5, 5.5, 1.8)	2.41 <i>ddt</i> (8.0, 8.0, 5.5, 2.0)	2.49 <i>ddddd</i> (10.5, 8.0, 7.5, 5.5, 2.0)	2.34 <i>dddt</i> (11.0, 7.5, 7.5, 6.0, 2.0)
3	1.46 m		5.16 ddd (9.5, 5.5, 4.5)		1.88 <i>ddd</i> (16.0, 11.0, 2.5)
	1.85–1.98 m	_		2.81 <i>ddd</i> (20.0, 10.5, 2.0)	2.03 <i>ddd</i> (16.0, 8.5, 6.0)
4	1.85–1.98 m	1.76 <i>ddd</i> (13.5, 5.0, 2.2)	1.70 <i>ddd</i> (15.0, 4.5, 2.8)		4.31 m
	2.25 dddd (14.0, 9.8, 7.0, 2.2)	2.52 <i>dddd</i> (13.5, 10.0, 3.8, 2.0)	2.63 <i>dddd</i> (15.0, 9.5, 3.0, 2.4)		_
5	1.85-1.98 ^a m	1.97 ddt (5.5, 5.5, 3.8, 2.2)	, ,	2.60 t (5.5, 5.5)	2.03–2.09 m
7a	0.94 d(9.5)	1.12 d (10.0)	1.13 d (10.0)	1.47 d (10.5)	1.31 d (9.8)
7b	2.38 <i>ddt</i> (9.5, 6.5, 6.5, 2.2)		2.44 <i>ddt</i> (10.0, 5.8, 5.8, 2.4)	2.67 <i>dddd</i> (10.5, 6.5, 5.5, 2.0)	2.26 ddt (9.8, 6.0, 6.0, 1.5)
8-Me	0.98 s	0.88 s	0.95 s	0.96 s	0.94 s
9-Me	1.19 s	1.21 s	1.23 s	1.35 s	1.25 s
10	3.55 dd (10.0, 7.8) 3.60 dd (10.0, 7.8)	3.64 dd (10.0, 5.5) 3.72 dd (10.0, 10.0)	4.07 dd (11.0, 8.0) 4.11 dd (11.0, 8.0)	3.68 dd (10.5, 8.0) 3.73 dd (10.5, 7.5)	3.53 dd (1.05, 7.5) 3.58 dd (10.5, 7.5)
3-OH	_	1.80-2.60 br s	_		
4-OH			WAREAU	_	1.57 br s
10OH	1.36 br s	1.80-2.60 br s		2.27 br s	1.57 br s
3-OCO <u>Me</u>		~	2.02 ^b s	_	
10-OCO <u>M</u> e		-	2.05 ^b s		_

Coupling constants in Hz.

Table 2. ¹H NMR spectral data for (-)-cis-myrtanol (1) and metabolites and derivatives (δ, TMS, in CDCl₃ at 270.05 MHz)

Н	1-3a	1-4	1-4a	Н	1-5
1	2.00-2.18 m	1.92–1.97 m	1.96-2.38 m	2a	1.60 ddd (12.0, 9.0,
2	2.40 434 (11.0.00	2.05–2.12 m	1.96-2.38 m	2b	1.0)
2	2.48 <i>dddt</i> (11.0, 8.0, 8.0, 6.0, 2.0)	2.03-2.12 m	1.90-2.38 m	20	2.01 <i>dddd</i> (12.0, 11.0, 9.0, 1.5)
3	1.90 ddd (16.0, 11.0,	1.57 ddt (13.5, 10.5,	1.54-1.68 m	3a	1.40 dddd (13.5, 11.0,
	2.5)	5.5, 5.5)			9.0, 7.5)
	2.12 ddd (16.0, 9.0,	1.90 ddt (13.5, 10.5,	1.96-2.38 m	3b	1.56 ddd (13.5, 9.0,
	5.5)	3.0, 3.0)			1.0)
4	5.25 m	1.92-1.97 m	1.96-2.38 m	4	2.15 dt (7.5, 5.0, 5.0)
	_	2.00-2.07 m	1.96-2.38 m	5	1.19 dd (8.5, 4.3)
5	2.00-2.18 m		-	6a	0.34 dd (4.8, 4.3)
7a	1.32 d (10.0)	1.42 d (9.5)	1.75 d (10.0)	6b	0.69 ddd (8.5, 4.8, 1.5)
7b	2.29 ddt (10.0, 6.0, 6.0, 1.5)	2.30 ddd (9.5, 7.5, 2.8)	2.53 <i>ddd</i> (10.0, 8.0, 2.3)	8	1.08° s
8-Me	1.01 s	1.02 s	1.14 s	9	1.29° s
9-Me	1.25 s	1.14 s	1.14 s	10	3.52 dd (10.0, 5.0)
10	3.98 dd (10.5, 8.0)	3.55 dd (10.5, 7.0)	3.99 dd (10.5, 7.5)		3.61 dd (10.0, 5.0)
	4.03 dd (10.5, 8.0)	3.58 dd (10.5, 7.5)	4.03 dd (10.5, 8.0)	7 -O H	2.14-2.42 br s
5-OH		1.31 <i>br s</i>		10-OH	2.14-2.42 br s
10-OH		1.31 br s			
4-OCOMe	$2.03^{a} s$	_			
5-OCOMe	-		1.98 ^b s		
10-OCOMe	$2.04^{a} s$		2.05 ^b s		

Coupling constants in Hz.

^{a,b} Values are interchangeable within each column.

^{a-c} Values are interchangeable within each column.

Table 3. ¹H NMR spectral data for (+)-trans-myrtanol (2) and metabolites and derivatives (δ , TMS, in CDCl₃ at 270.05 MHz)

Н	2	2-1	2-2	2-2a	2-3
1	1.90 ddd (5.5, 5.0, 1.0)	2.02 dt (6.0, 6.0, 2.0)	2.05 t (5.5, 5.5)	1.97-2.03 m	2.48-2.64 m
2	2.16 m	2.79 <i>dddt</i> (8.5, 5.5, 3.0, 2.0, 2.0)	2.16 m	2.31 m	2.48–3.14 m
3a	1.24 <i>ddt</i> (14.5, 10.0, 9.0, 9.0)		1.28 <i>dddd</i> (14.5, 9.5, 8.8, 8.0)	1.34 <i>dddd</i> (14.5, 9.5, 8.0, 8.0)	3.0–3.14 ^e m
3b	1.62 <i>ddt</i> (14.5, 8.5, 8.5, 1.5)	_	' '	1.70 ddt (14.5, 9.0, 9.0, 1.5)	2.48-2.64 ^e m
4	1.74 dddd (13.5, 10.0, 3.5, 1.5)	2.69 <i>ddd</i> (19.5, 3.0, 2.0)	1.72–1.85 m	1.72–1.86 m	_
	1.84 <i>ddddd</i> (13.5, 9.0, 8.5, 1.2, 1.0)	2.49 <i>ddd</i> (19.5, 3.0, 1.3)	1.72–1.85 m	1.72-1.86 m	
5	1.89 <i>dddd</i> (5.5, 5.0, 3.5, 1.0)	2.13 tt (6.0, 6.0, 3.0, 3.0)	2.05 dt (5.5, 5.5, 2.0)	1.97–2.03 m	2.48-2.64 m
7a	1.32 d (10.0)	1.18 d (11.0)	1.38 d(10.0)	1.42 d (10.0)	1.79 d (10.5°
7b	2.05 dtt (10.0, 5.5, 5.5, 1.2, 1.2)	2.51 <i>dddt</i> (11.0, 6.0, 6.0, 3.0, 1.3)	2.04-2.13 m	2.01-2.12 m	2.48-2.64 m
8-Me	0.85 s	0.93 s	0.95 s	$0.93 \ s$	0.91 s
9-Me	1.22 s	1.36 s			1.40 s
9		_	$3.72^{b} d (10.5)$	$4.20^{\circ} d (10.5)$	_
		_	$3.78^{6} d(10.5)$	$4.24^{\circ} d(10.5)$	_
10a	3.40 dd (10.5, 7.5)	3.54° dt (11.0, 5.5, 5.5)	3.43 dd (10.0, 7.5)	3.87 dd (11.0, 7.5)	
10b	3.44 dd (10.5, 6.5)	3.90° dd (11.0, 8.5)	3.48 dd (10.0, 6.5)	3.93 dd (11.0, 6.5)	_
9-OH			not found	_	_
10-OH	not found	2.92 d (5.5)	not found	_	_
9-OCOMe				$2.04^{d} s$	_
10-OCO <u>Me</u>			_	$2.08^{d} s$	
соон	_		_		not found

Coupling constants in Hz.

Table 4. ¹H NMR spectral data for (+)-trans-myrtanol (2) and metabolites and derivatives (δ , TMS, in CDCl₃ and CD₃OD (2-4) at 270.05 MHz)

Н	2-3b	2-3c	2-4	2-4b	2-4ab	
1	2.47-2.55 m	2.23 ddd (5.8, 4.8, 1.5)	1.68-2.10 m	1.78-2.10 m	2.02–2.34 m	
2	2.47-3.11 m	3.08 dddd (10.5, 5.5, 2.0, 1.5)	2.73 t (8.5, 8.5)	2.77 t (8.5, 8.5)	2.81 t (8.5, 8.5)	
3	3.04–3.11 m	1.83 ddd (16.0, 10.0, 2.8)	1.68-2.10 ^a m	$1.78-2.10^{b} m$	1.80-1.94° m	
	2.47-2.55 m	2.70 ddd (16.0, 10.0, 5.5)	$1.68-2.10^a m$	$1.78-2.10^{b} m$	$2.02-2.34^{\circ} m$	
4	_	4.36 ddd (10.0, 3.5, 2.8)	2.10-2.24 ^a m	$2.17-2.24^{\rm b}$ m	2.02-2.34° m	
	_	_	1.68-2.10 ^a m	$1.78-2.10^{\rm b} m$	$2.02-2.34^{\circ} m$	
5	2.59 t (5.0, 5.0)	2.08 ddd (6.0, 4.8, 3.5)		_	_	
7a	1.79 dd (15.0, 5.0)	1.12 d(9.5)	1.68-1.98 m	1.78–1.95 m	2.02-2.34 m	
7ь	2.47-2.55 m	2.17 dddd (9.5, 6.0, 5.8, 2.0)	$1.98-2.10 \ m$	1.78-2.10 m	2.02-2.34 m	
8-Me	0.89 s	1.12 s	$0.90 \ s$	$0.91 \ s$	1.02 s	
9-Me	1.38 s	1.26 s	1.16 s	1.19 s	1.18 s	
4-OH	_	1.72 s		_	_	
5-OH	_	_	Not found	2.07 s		
5-OCOMe	_	_	_	-	1.98 s	
соон	_	_	Not found			
COOMe	3.73 s	3.66 s	_	3.66 s	3.66 s	

Coupling constants in Hz.

4,10-Diacetate of 1-3 (1-3a). Compound 1-3 (46 mg) was acetylated in the usual manner to yield 1-3a (35 mg), oil; $[\alpha]_D^{20} = 10.13^{\circ}$ (CHCl₃; c 1.0): HRMS m/z: 254.1518 ([M]⁺, calcd for C₁₄H₂₂O₄: 254.3278). EIMS

m/z (rel. int.): 211(1), 195(2), 181(2), 152(4), 151(13), 134(38), 119(28), 105(8), 43(base). IR $\nu_{\rm max}$ cm $^{-1}$: 2943, 1737, 1475, 1369, 1244, 1166, 1035, 978, 603. ¹H NMR and ¹³C NMR: see Tables 2 and 5.

a-e Values are interchangeable within each column.

a-c Values are interchangeable within each column.

C	1	1-1	1-1a	1-2	1-3	1-3a	1-4	1-4a	1-5
1	42.88(d)	43.32(d) ^b	42.63(d)	$42.60(d)^g$	42.93(d)	42.70(d)	37.72(d)	38.60(d)	37.64(s)
2	44.43(d)	55.38(d)	47.85(d)	$39.75(d)^{8}$	42.57(d)	38.25(d)	42.53(d)	39.72(d)	$25.14(t)^{q}$
3	18.74(t)	68.35(d)	68.84(d)	36.80(t)	27.11(t)	27.56(t)	20.52(t)	20.29(t)	$27.34(t)^{q}$
4	25.96(t)	37.71(t)	32.69(t)	213.96(s)	69.73(d)	73.08(d)	32.36(t)	28.19(t)	42.47(d)
5	41.45(d)	$41.82(d)^{b}$	41.14(d)	58.20(d)	48.39(d)	45.06(d)	75.87(s)	82.43(s)	23.37(d)
6	38.60(s)	38.01(s)	37.96(s)	40.08(s)	38.80(s)	38.50(s)	43.79(s)	43.64(s)	11.03(t)
7	33.11(t)	34.24(t)	35.78(t)	27.87(t)	30.67(t)	27.84(t)	41.68(t)	40.16(t)	71.31(s)
8	$23.28(q)^{a}$	$23.91(q)^{\circ}$	$23.70(q)^{d}$	$24.63(q)^{h}$	$22.79(q)^{i}$	$22.82(q)^{j}$	$20.52(q)^{m}$	21.48(q)	$^{n} 28.09(q)^{r}$
9	$27.95(q)^{a}$	$27.45(q)^{c}$	$27.02(q)^{d}$	$26.66(q)^{h}$	$27.63(q)^{i}$	$27.30(q)^{j}$	$22.68(q)^{m}$		$^{\rm n} 27.44(q)^{\rm r}$
10	67.74(t)	67.16(t)	66.62(t)	65.60(t)	67.05(t)	68.04(t)	67.34(t)	68.19(t)	
3-COMe			$21.29(q)^{e}$			` '		` '	
3-COMe			$170.48(s)^{f}$						
4-COMe						$21.35(q)^{k}$			
4-COMe						$170.72(s)^{1}$			
5-COMe						. – (.)		21.29(q)	o
5-COMe								$170.09(s)^{3}$	
10-COMe			$20.85(q)^{e}$			$20.86(q)^{k}$		20.92(q)	

 $171.95(s)^{f}$

Table 5. ¹³C NMR spectral data for (-)-cis-myrtanol (1) and its metabolites and derivatives (67.80 MHz, CDCl₃)

10-COMe

5-Hydroxy-cis-myrtanol (1-4). Crystals; mp 112.4–119.3°; $[\alpha]_0^{20}$ –17.34° (CHCl₃; c 0.15). EIMS m/z (rel. int.): 139(17), 137(4), 121(15), 109(28), 94(22), 83(74), 71(38), 56(22), 43(base). IR $v_{\rm max}$ cm⁻¹: 3326(O–H), 2943, 1468, 1145, 1092(C–O), 1049(C–O), 1021, 986. ¹H NMR and ¹³C NMR: see Tables 2 and 5.

5,10-Diacetate of **1-4** (**1-4a**). Compound **1-4** (27 mg) was acetylated in the usual manner to yield **1-4a** (22 mg). Oil; $[\alpha]_D^{20} - 12.89^\circ$ (CHCl₃; c 1.0): HRMS m/z: 212.1395 ([M-CH₂CO]⁺, calcd for C₁₂H₂₀C₃: 212.2903). EIMS m/z (rel. int.): 212(4), 197(1), 196(1), 170(3), 169(5), 152(56), 134(49), 109(46), 43(base). IR $\nu_{\rm max}$ cm⁻¹: 2950, 1737, 1471, 1365, 1244, 1074, 1035, 606. ¹H NMR and ¹³C NMR: see Tables 2 and 5.

[1R, 4R, 5S]-*Thujane*-7,10-*diol* (1-5). Oil; $[\alpha]_{0}^{20}$ (CHCl₃; *c* 0.35): EIMS m/z (rel. int.): 155(2), 152(8), 137(5), 121(22), 109(19), 94(48), 79(59), 59(base), 43(78). IR ν_{max} cm⁻¹: 3355 (O–H), 2929, 1695, 1464, 1372, 1266, 1156, 1046, 929, 737. ¹H NMR and ¹³C NMR: see Tables 2 and 5.

Preparation of the TBDMS ester of 1-1. The mixt. of a soln of 1-1 (40 mg) in distilled CH_2Cl_2 (0.47 ml), NEt₃ (0.039 ml), 4-N,N-dimethylaminopyridine (2.0 mg) and TBDMS-Cl (40 mg) was stirred at room temp for 14 hr. (TBDMS = tert-butyldimethylsilyl.) After reaction, the purified TBDMS ester was obtained (46 mg) [11].

Preparation of (R)-(+) and (S)-(-)-MTPA ester of 1-1. (R)-(+) (71 mg) and (S)-(-)-MTPA-Cl (58 mg) were prepd. (MTPA = (s)-(-)- α -(trifluoro-methyl) phenylacetic acid) [12]. A soln of the TBDMS ester (23 mg) of 1-1, (dimethylamino)pyridine (40 mg) and NEt₃ (0.017 ml) in 2.7 ml of distilled CH₂Cl₂ was treated with (R)-(71 mg) or (S)-MTPA-Cl (58 mg), and the mixt. was stirred at room temp for 12 hr [13]. 3-[(Dimethylamino)propyl]amine (0.020 ml) was added at the end of the reaction and the residue was

saturated with NaCl, extracted with CH₂Cl₂, evapd, dried and purified by silica gel CC and PTLC. On account of the loss of the TBDMS group by hydrolysis, each ester (R: 45 mg, S: 41 mg) was mixed with n-Bu₄NF-THF (3 ml) and was stirred at room temp for 1 hr. The residue was saturated with NaCl, extracted with Et₂O, evapd, dried and purified. Consequently, the MTPA ester was yielded (R: 21 mg, S: 27 mg). $\Delta \delta$ $(\Delta \delta_{\rm S} - \Delta \delta_{\rm R})$ values: (C1)proton; 2.03-2.24 = -0.01, (C2)proton; 2.36-2.24 = +0.12, (C3)proton; 5.43-5.41 = +0.02, (C4)proton; 2.66-2.69 = -0.03, 1.76-(C5)proton; 1.96-2.00 = -0.041.91 = -0.15, (C7)proton; 2.41-2.42 = -0.01, 1.08-1.11 = -0.03, 0.91-0.91 = 0, (C9)methyl; (C8)methyl; 1.23 = 0, (C10)proton; 3.60-3.54 = +0.06, 3.79-3.73 = +0.06.

 $171.05(s)^{1}$

 $171.09(s)^p$

Preparation of the TBDMS ester of 1-3. The TBDMS ester of 1-3 (30 mg) was obtained (36 mg) in the same manner as that of 1-1 [11].

Preparation of (R)-(+) and (S)-(-)-MTPA esters of 1-3. The TBDMS ester (18 mg) of 1-3 was used for the reaction with (R)-MTPA-Cl and (S)-MTPA-Cl, respectively. The MTPA ester of 1-3 was obtained (R: 7 mg, S: 9 mg) in the same way as 1-1 [12, 13]. $\Delta \delta$ $(\Delta \delta_S - \Delta \delta_R)$ values: (C2)proton; 2.36-2.34 = +0.02, (C3)proton; 2.03-1.92 = +0.11, (C4)proton; 5.54-5.55 = -0.01, (C5)proton; 2.17-2.19 = -0.02(C7)proton; 1.21-1.29 = -0.08, (C8)methyl; 1.01-1.02 = -0.01, (C9)methyl; 1.26-1.28 = -0.023.61 - 3.60 =(C10)proton; 3.56 - 3.55 = +0.01, +0.01.

Metabolites from (+)-trans-myrtanol (2). The neutral part (2.10 g) was chromatographed over silica gel with a hexane–EtOAc gradient repeatedly to give the metabolic products 2-1 (229 mg) and 2-2 (173 mg). The acidic part (1.87 g) was methylated with $\mathrm{CH_2N_2}$ in the usual manner and the product was purified by

a-r Values are interchangeable within each column.

C	2	2-1	2-2	2-2a	2-3	2-3b	2-3c	2-4	2-4b	2-4ab
1	42.19(d)	40.53(d)	37.09(d)°	38.36(<i>d</i>)	38.46(d)	38.47(d)	40.83(d)	40.61(d) ^k	38.85(<i>d</i>) ⁿ	39.64(<i>d</i>) ^q
2	37.65(d)	53.66(d)	$37.66(d)^{c}$	33.50(d)	44.10(d)	44.03(d)	44.26(d)	$40.87(d)^{k}$	39.59(d) ⁿ	$40.43(d)^{q}$
3	18.14(t)	216.26(s)	18.27(t)	18.18(t)	35.17(t)	35.46(t)	$25.02(t)^{i}$	20.17(t)	19.19(t)	19.26(t)
4	24.09(t)	44.59(t)	23.58(t)	$23.27(t)^{d}$	211.26(s)	211.44(s)	71.76(d)	$31.87(t)^{1}$	$30.55(t)^{\circ}$	$26.89(t)^{r}$
5	40.98(d)	38.19(d)	$36.64(d)^{c}$	36.73(d)	57.46(d)	57.43(d)	47.50(d)	75.39(s)	74.82(s)	81.39(s)
6	39.16(s)	39.77(s)	44.81(s)	43.06(s)	42.11(s)	41.98(s)	38.18(s)	45.46(s)	44.64(s)	44.64(s)
7	23.40(t)	29.71(t)	23.58(t)	$23.50(t)^{d}$	23.05(t)	22.92(t)	$28.38(t)^{i}$	$33.61(t)^{1}$	$33.60(t)^{\circ}$	$31.80(t)^{r}$
8	$20.11(q)^{a}$	$19.90(q)^{b}$	15.27(q)	20.90(q)	$21.98(q)^{g}$	$21.88(q)^{h}$	$22.52(q)^{i}$	$18.78(q)^{m}$	$18.24(q)^{p}$	$19.10(q)^s$
9	$26.62(q)^{a}$	$26.12(q)^{b}$		70.33(t)	$25.77(q)^{g}$		$27.10(q)^{i}$	$22.15(q)^{m}$	$21.10(q)^{p}$	$21.74(q)^s$
10	66.79(t)	63.30(t)	66.35(t)	67.60(t)	179.66(s)	174.91(s)	176.67(s)	179.91(s)	176.55(s)	176.16(s)
5-COMe	. ,				• • •	, ,				$21.37(q)^{s}$
5-COMe										169.88(s)
9-COMe				$15.61(q)^{f}$						
9-COMe				171.55(s)e						
10-COMe				$15.61(q)^{f}$						
10-COMe				$171.22(s)^{e}$						
-COOMe				` '		52.16(q)	51.75(q)		51.67(q)	51.70(q)

Table 6. ¹³C NMR spectral data for (+)-transmyrtanol (2) and its metabolites and derivatives (67.80 MHz, CDCl₃, CD₃OD (2-4))

silica gel CC obtain the metabolites 2-3 (416 mg) and 2-4 (274 mg). The R_i in GC and R_f value on TLC were as follows: 2-1 (23.1 min, 0.54), 2-2 (34.4 min, 0.12), 2-3 (36.2 min, 0.12), 2-3b (- min, 0.72), 2-4 (33.3 min, 0.12), 2-4b (- min,0.58). The developing solvent for TLC was n-hexane–EtOAc (5:5).

3-Oxo-trans-myrtanol (2-1). Oil; $[\alpha]_D^{20} + 8.40^\circ$ (CHCl₃; c 0.4). EIMS m/z (rel. int.): 168(2), 153(1), 150(4), 139(1), 137(3), 135(2), 114(26), 82(82), 69(69), 43(base), 41(94). IR v_{max} cm⁻¹: 3418(O–H), 2936, 1706(C=O), 1471, 1408, 1369, 1323, 1198, 1049(C-O), 1007, 514. ¹H NMR and ¹³C NMR: see Tables 3 and 6.

9-Hydroxy-trans-myrtanol (2-2). Oil; $[\alpha]_D^{20} + 20.69^\circ$ (CHCl₃; c 1.0). EIMS m/z (rel. int.): 139(4), 137(9), 123(12), 122(17), 121(23), 107(23), 93(34), 81(61), 79(42), 55(42), 43(base), 41(36). IR v_{max} cm⁻¹: 3340, 2929, 1709, 1464, 1379, 1057, 1028, 1014, 936, 634. ¹H NMR and ¹³C NMR: see Tables 3 and 6.

9,10-Diacetate of **2-2** (**2-2a**). Compound **2-2** (29 mg) was acetylated in the usual manner to yield **2-2a** (20 mg). Oil; $[\alpha]_D^{20} - 13.54^\circ$ (CHCl₃; c 1.0): HRMS m/z: 212.1389 ([M–CH₂CO]⁺, calcd for C₁₂H₂₀O₃: 212.2903). EIMS m/z (rel. int.): 195([M–OCOCH₃]⁺(9), 152(5), 134(19), 119(24), 93(35), 79(25), 43(base). IRv_{max} cm⁻¹: 2936, 1737, 1461, 1383, 1376, 1237, 1032, 982. ¹H NMR and ¹³C NMR: see Tables 3 and 6.

4-Oxo-trans-myrtanic acid (2-3). Compound 2-3b (47 mg) was hydrolyzed with aq. 1% NaOH and treated with a proton ion-exchange resin that had been pretreated with acid. Compound 2-3 (4 mg) was isolated, crystals; mp 172.2–175.8°; $[\alpha]_D^{20} + 63.63^{\circ}$ (CHCl₃; c 0.2). EIMS m/z (rel. int.): 182(4), 167(6), 164(11), 149(7), 137(13), 136(9), 125(4), 121(12), 109(18), 95(36), 83(62), 81(39), 67(34), 55(base), 41(48). IR v_{max} cm⁻¹: 2957, 2362, 1734, 1681, 1305,

1227, 1198, 1170, 1149, 890, 670. ¹H NMR and ¹³C NMR: see Tables 3 and 6.

Methyl ester of **2-3** (**2-3b**). Crystals; mp 59.0–62.3°; $[\alpha]_{20}^{20}$ +47.91° (CHCl₃; c 1.0): EIMS m/z (rel. int.): 196(8), 181(4), 178(8), 164(22), 137(30), 95(65), 83(87), 55(base). IR ν_{max} cm⁻¹: 2957, 1730, 1715, 1436, 1312, 1202, 1174, 1018, 876. ¹H NMR and ¹³C NMR: see Tables 4 and 6.

Methyl ester of 4-hydroxy-trans-myrtanic acid (2-3c). Compound 2-3b (40 mg) was reduced with NaBH₄ in MeOH. After the reaction, the soln was poured into H₂O, acidified with 1 N HCl and extracted with Et₂O. Compound 2-3c (40 mg) was isolated as an oil; ¹H NMR and ¹³C NMR: see Tables 4 and 6.

5-Hydroxy-trans-myrtanic acid (2-4). Compound 2-4b (34 mg) was treated by the same method as 2-3b. Compound 2-4 (3 mg) was isolated as crystals; mp 131.1–133.0°. EIMS m/z (rel. int.): 166(20), 151(11), 141(17), 138(12), 123(30), 121(41), 105(38), 95(50), 79(76), 67(50), 55(56), 43(base), 41(77). IR $v_{\rm max}$ cm⁻¹: 3390, 2936, 2525, 2234, 2064, 1702, 1464, 1386, 1333, 1223, 1209, 1124, 975, 627. ¹H NMR and ¹³C NMR: see Tables 4 and 6.

Methyl ester of **2-4** (**2-4b**). Crystals; mp 49.5–52.5°; $[\alpha]_D^{20} + 4.56^\circ$ (CHCl₃; c 1.0). EIMS m/z (rel. int.): 180(2), 167(6), 166(27), 155(21), 148(17), 138(20), 128(17), 123(32), 112(34), 95(48), 81(32), 79(39), 69(36), 55(30), 43(base). IR v_{max} cm⁻¹: 3418, 2957, 1730, 1432, 1383, 1333, 1202, 1124, 1053, 1039, 1025, 752. ¹H NMR and ¹³C NMR: see Tables 4 and 6.

Acetate of **2-4b** (3-4ab). Compound **2-4b** (53 mg) was acetylated in the usual manner to yield **2-4ab** (58 mg) as an Oil; $[\alpha]_D^{20} + 4.12^\circ$ (CHCl₃; c 1.0). FAB-MS (pos.) m/z 241[MH]⁺. EIMS m/z (rel. int.): 209(2), 198(13), 180(13), 166(18), 155(23), 128(13), 121(22), 112(23), 95(20), 79(16), 67(15), 55(21), 43(base), 41(35). IR v_{max} cm⁻¹: 3454, 2943, 1730, 1457, 1436,

a-s Values are interchangeable within each column.

1372, 1337, 1248, 1220, 1174, 1096, 1039, 752, 606. ¹H NMR and ¹³C NMR: see Tables 4 and 6.

Acknowledgements—This work was supported by the Grant-in-Aid for Scientific Research on General Areas no. 07640793 from the Ministry of Education, Science and Culture, Japan.

REFERENCES

- 1. Miyazawa, M., Nankai, H. and Kameoka, H., *Phytochemistry*, 1995, **40**, 69.
- Miyazawa, M., Nakaoka, H. and Kameoka, H., Chemistry Express, 1991, 6, 667. (Chemical Abstracts, 1993, 116, 251829k.)
- 3. Miyazawa, M., Nankai, H. and Kameoka, H., *Phytochemistry*, 1995, **39**, 1077.
- 4. Miyazawa, M., Uemura, T. and Kameoka, H., *Phytochemistry*, 1994, 37, 1027.
- 5. Miyazawa, M., Suzuki, Y. and Kameoka, H., *Phytochemistry*, 1995, **39**, 337.

- Miyazawa, M., Nobata, M. and Kameoka, H., Phytochemistry, 1995, 39, 569.
- 7. Miyazawa, M., Yokote, K. and Kameoka, H., *Tetrahedron Asymmetry*, 1995, **6**, 1067.
- 8. Miyazawa, M., Tsuruno, K. and Kameoka, H., Tetrahedron Asymmetry, 1995, 6, 2121.
- Miyazawa, M., Okamura, S. and Kameoka, H., Journal of Chemical Technology and Biotechnology, 1996, 65, 171.
- Eini, Meir; Tamarkin, Dov (Clilco, Ltd.) Eur.
 Pat. Appl. EP 495,684 (Cl.A01N65100), 1992, US
 Appl. 642,806, 1991; 17 pp.
- 11. Chaudhary, S. K. and Hernandez, O., Tetrahedron Letters, 1979, 2, 99.
- 12. Dale, J. A., Dull, D. L. and Mosher, H. S., Journal of Organic Chemistry, 1969, 9, 2543.
- 13. Ohtani, I., Kusumi, T., Kashman, Y. and Kakisawa, H., *Journal of the American Chemistry Society*, 1991, 113, 4092.
- 14. Rees, J. C. and Whittaker, D., Organic Magnetic Resonance, 1981, 15, 363.
- 15. Badjah-Hadj-Ahmwd, A. Y., Meklati, B. Y., Waton, H. and Pham, Q. T., Magnetic Resonance Chemistry, 1992, 30, 807.