

Phytochemistry, Vol. 45, No. 7, pp. 1515–1517, 1997 © 1997 Elsevier Science Ltd All rights reserved. Printed in Great Britain 0031–9422/97 \$17.00+0.00

STRUCTURAL REVISION OF FOUR COUMARINS FROM PTEROCAULON SPECIES

SILVIA L. DEBENEDETTI,* NORBERT DE KIMPE,*† MARC BOEYKENS,† JORGE D. COUSSIO and BART KESTELEYN†

Instituto de Química y Metabolismo del Fármaco, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113 Buenos Aires, Argentina; † Department of Organic Chemistry, Faculty of Agricultural and Applied Biological Sciences, University of Gent, Coupure Links 653, B-9000 Gent, Belgium

(Received in revised form 20 January 1997)

Key Word Index—*Pterocaulon*; Compositae; structural revision; trioxygenated coumarins.

Abstract—The structures of two 5,6,7-trioxygenated coumarins, named sabandinol and sabandinone, isolated from *Pterocaulon virgatum*, have been revised. The new structures assigned were regioisomers and were identified on the basis of additional spectroscopic data and X-ray crystallographic data. Also the structural revision of two trioxygenated coumarins from *Pterocaulon balansae* and *P. lanatum* is presented. © 1997 Elsevier Science Ltd. All rights reserved

In our previous work, we reported the isolation and identification of two coumarins from the chloroform extract of the aerial parts of *Pterocaulon virgatum* L. DC [1]. Their structures were established as 1 and 2 by comparison of their physical and spectroscopic data (UV, IR, EI-MS, mp) with sabandinol [2] and sabandinone, respectively [3]. Based on the literature data available at that time [2, 3], the complete identity of the compounds from *P. virgatum* L. DC with sabandinol and sabandinone was made clear.

Further isolation and identification of 5-methoxy-6,7-methylenedioxycourmarin (3) and 5-(3-methyl-2-butenyloxy)-6,7-methylenedioxycoumarin (4) as new coumarins from the same plant [4], has now allowed us to revise the structures of the coumarins, originally identified as 1 and 2, as the regioisomers 5-(2,3-dihydroxy-3-methylbutyloxy)-6,7-methylenedioxycoumarin (5) and 5-(3-methyl-2-oxobutyloxy)-6,7-methylenedioxycoumarin (6), respectively. This is the first report on these two new 5,6,7-trioxygenated coumarins (5) and (6).

RESULTS

On comparison of additional spectroscopic data (¹³C NMR and 500 MHz ¹H NMR, Tables 1 and 2), of coumarins assigned as 1 and 2 with those of coumarin 4, the structure of which was unambiguously determined by X-ray diffraction [4], and combining

all the structural elements, the regioisomers 5 and 6 were attributed as the correct structures for these two coumarins. The ¹H and ¹³C NMR data of these three compounds matched completely with the structure of a 5,6,7-trioxygenated coumarin.

The isolation of coumarin 7 was reported from related Pterocaulon species, namely P. balansae Chodat and P. lanatum O. Kuntze [5]. The positioning of the O-substituents on the coumarin nucleus was established on the basis of acidic cleavage of coumarin 8, also isolated from the same sources [5]. The latter coumarin was first isolated from Pteronia glabrata and the structure was determined by the aromatic solvent induced shift (ASIS) observed for the methylenedioxy and methyleneoxy signals in the ¹H NMR spectrum [6]. A synthesis of coumarin 8 [7] revealed that the spectroscopic properties of this compound differed from the coumarin that was isolated from P. lanatum and P. balansae [5]. Accordingly, the synthetic and natural compound must have a different structure. However, the authors did not propose an alternative structure [7].

An examination of the spectroscopic and physical data reported for the coumarin designated as 7, isolated from *P. balansae* and *P. lanatum*, matched very well with those we obtained for 5 [5-(2,3-dihydroxy-3-methylbutyloxy)-6,7-methylenedioxycoumarin], which was first published as sabandinol [2]. Therefore, the previously reported structure 7 [5] must also have structure 5. Consequently, coumarin 8 must be revised to structure 9. It seems that care should be taken in the structural identification of tri- and tetraoxygenated coumarins and that several previously reported com-

^{*} Authors to whom correspondence should be addressed.

Table 1. ¹H NMR spectral data of coumarins 1 (now assigned structure 5), 2 (now assigned structure 6) and 4 (500 MHz, CDCl₃, TMS as internal standard)

Н	4	5 (newly assigned)*	6 (newly assigned)†
3	6,20(d, J = 9.8 Hz)	6.23 (d, J = 9.7 Hz)	6.25(d, J = 9.7 Hz)
4	7.95(d, J = 9.8 Hz)	7.96(d, J = 9.7 Hz)	8.07(d, J = 9.7 Hz)
8	6.53(s)	6.57(s)	6.55(s)
O-CH ₂ -O	6.02(s)	6.06(s)	5.95(s)
1'	4.85(d, J = 7.4 Hz)	4.37 (dd, J = 10.4, 8.1 Hz)	5.08(s)
2′	5.48 (br, d, J = 7.4 Hz)	4.51 (dd, J = 10.4, 2.9 Hz) 3.82 (dd, J = 8.1, 2.9 Hz)	_
3′			2.77(m)
4′	1.73(s)	1.27(s)	1.17(s)
3'-CH ₃	1.83(s)	1.33(s)	1.17(s)

^{*}Originally assigned as 1.

[†]Originally assigned as 2.

Table 2. ¹³C NMR spectral data of coumarins 1 (now assigned structure 5), 2 (now assigned structure 6) and 4 (20 MHz, CDCl₂)

С	4	5 (newly assigned)*	6 (newly assigned)†
2	161.25(s)	161.18(s)	161.22 (s)
3	111.63 (d)	112.14(d)	112.12(d)
4	139.04 (d)	138.58 (d)	138.88 (d)
4a	107.39(s)	106.97(s)	106.56 (s)
5	137.28(s)	136.77(s)	136.51 (s)
6	132.37(s)	132.23 (s)	131.19(s)
7	$151.64(s)_{+}^{+}$	151.52(s)‡	151.71(s)
8	92.40(d)	93.14 (d)	92.93 (d)
8a	152.55(s)‡	152.43(s)‡	152.31(s)
O-CH ₂ -O	101.92(t)	102.06(t)	101.88 (t)
l'	68.90(t)	73.76(t)	73.74(t)
2′	119.55 (d)	71.61 (d)	208.44(s)
3′	139.70(s)	76.46(s)	32.12(d)
4′	25.75(q)	26.72(q)	18.02(q)
3'-CH ₃	18.15(q)	24.82(q)	18.02 (q)

^{*}Originally assigned as 1.

pounds of this type might have isomeric structures. Several incorrect structures have been reported in the recent literature, as proven by structural revisions, e.g. obtusifol [8].

REFERENCES

- 1. Debenedetti, S. L., Ferraro, G. E. and Coussio, J. C., *Planta Medica*, 1981, **42**, 97.
- Gonzalez, A. G., Estevez, R., Baez Arencibia, J. and Ruano Pérez, T., Anales de Química, 1973, 69, 1141.
- Gonzalez, A. G., Estevez, R. and Jaraiz, I., Anales de Química, 1970, 66, 1017.
- Debenedetti, S. L., Palacios, P. S., Nadinic, E. L., Coussio, J. D., De Kimpe, N., Boeykens, M., Feneau-Dupont, J. and Declercq, J. P., *Journal of Natural Products*, 1994, 57, 1539.
- Magalhaes, A. F., Magalhaes, E. G., Leitao Filho, H. F., Frighetto, R. T. S. and Barros, S. M. G., Phytochemistry, 1981, 20, 1369.
- Bohlmann, F., Grenz, M. and Zdero, C., Chemisch Berichte, 1975, 108, 2955.
- Magalhaes, A. F. and Frighetto, R. T. S., Química Nova, 1983, 6, 165.
- 8. Boeykens, M., De Kimpe, N., Debenedetti, S. L., Nadinic, E. L., Gomez, M. A., Coussio, J. D., Abyshev, A. Z. and Gindin, V. A., *Phytochemistry*, 1994, **36**, 1559.

[†] Originally assigned as 2.

[‡] May be interchanged.