

PII: S0031-9422(97)00256-2

A TRITERPENE GLYCOSIDE FROM SCROPHULARIA KOELZII*

S. P. S. BHANDARI, † U. V. BABU and H. S. GARG.

Medicinal Chemistry Division, Central Drug Research Institute, Lucknow-226001, India

(Received in revised form 12 February 1997)

Key Word Index—Scrophularia koelzii; Scrophulariaceae; scrokoelziside 'B'.

Abstract—A new triterpene glycoside. scrokoelziside B, was isolated from the aerial parts of *Scrophularia koelzii* and characterized as 3β -O-([β -D-glucopyranosyl (1 \rightarrow 2), α -L-rhamnopyranosyl (1 \rightarrow 3)]- β -D-glucopyranosyl)-olean-11.13 (18)-diene 23 α , 28 diol on the basis of its ¹³C NMR and 2D NMR data. © 1997 Elsevier Science Ltd. All rights reserved

INTRODUCTION

In continuation of our earlier studies on *Scrophularia koelzii* [1, 2], we report here on the isolation and characterization of a new triterpene glycoside, scrokoelziside B (1).

RESULTS AND DISCUSSION

The chloroform extract of the dried aerial parts yielded the glycosidic compounds scrokoelziside B (1) and scrokoelziside A [2]. The glycosidic nature of compound 1 was indicated by the broad absorption bands at 3400 and 1075 cm⁻¹ for hydroxyl groups in its IR spectrum. In the negative-ion FAB mass spectrometry the molecular ion peak appeared at m/z 1071 compatible with the molecular formula $C_{54}H_{88}O_{21}$.

The ¹H NMR spectrum (Table 1) displayed a pattern characteristic of a pentacyclictriterpene (six tertiary methyl singlets at δ 0.84, 0.92, 0.94, 0.94, 1.02 and 1.07), an oxymethine at δ 4.15 as a multiplet and two oxymethylenes, one as a singlet at δ 3.73 and the other as an AB quartet (J = 11.2 Hz) at δ 3.59 and 4.20. respectively. Two olefinic protons resonating at δ 5.67 (1H, d, J = 10.6 Hz) and 6.57 (1H, dd, J = 10.6, 1.5 Hz) were indicative of an endocyclic disubstituted olefinic bond in a Δ^{11} oleanene skeleton [3, 4]. The downfield shift of the olefinic proton at δ 6.57 was due to conjugation with a tetrasubstituted olefinic bond [9]. The sugar part of ¹H NMR spectrum showed two doublets (J = 6.2 Hz) for secondary methyl groups at δ 1.40 and 1.75, three doublets for anomeric protons $(\delta 5.28, J = 7.5 \text{ Hz}, \text{Glc-1}; 4.85, J = 7.5 \text{ Hz}, \text{Fuc-1};$

The ¹³C NMR spectrum of compound 1 showed 54 resonances of which 30 were accounted for by the sapogenin moiety and the rest (24) by the oligosaccharide moiety (4×hexoses). The presence of six methyl groups in the aglycone moiety was supported by carbon resonances at δ 12.86, 17.27, 18.77, 20.81, 24.70 and 33.07. The two oxymethylene carbons resonating at δ 63.21 and 64.69, the oxymethine carbon at δ 82.71, a disubstituted double bond at δ 125.90 and 126.49, and a tetrasubstituted double bond at δ 133.30 and 136.36 revealed the presence of the olean 11.13(18) diene-3 β , 23 α ,28 triol skeleton in compound 1, which was in good agreement with the reported data of triterpenoid glycosides having the same skeleton [6]. The presence of glycosidation at C-23 and C-28 was ruled out whereas glycosidation at C-3 was supported by comparison of the chemical shifts with those of scrokoelziside A [2]. The appearance of four anomeric carbon resonances at δ 105.02, 104.01, 104.17 and 102.82, and in the ¹H NMR spectrum at δ 5.61, 5.28, 3.85 and 5.88 further confirmed the existence of a tetrasaccharide moiety in compound 1. Additionally, there were 16 methine resonances between δ 70.44 and 84.76, two oxymethylenes at δ 61.39 and 63.21, and two methyl resonances at δ 17.02 and 18.59, supporting the existence of two hexopyranose and two 6deoxyhexopyranose residues. Both the hexopyranose

^{5.61,} J = 7.2 Hz, Glc-2), indicative of a β -anomeric configuration [5] of three monosaccharides, and a broad singlet ($W_{12} = 1.8$ Hz) at δ 5.88 attributed to a monosaccharide (Rha) with an α -anomeric configuration [5]. Many overlapping multiplets were observed between δ 3.59–4.88, the assignment of which was performed by 1 H- 1 H COSY. The analysis of these spectral data confirmed the presence of a tetrasaccharide residue composed of two hexopyranoses ($2 \times \text{glucopyranose}$) and two 6-deoxyhexopyranoses (Fuc+Rha) in 1.

^{*}CDRI Communication No. 5608

[†] Author to whom correspondence should be addressed.

[♣] Deceased.

residues were identified as glucopyranose and the 6-deoxyhexopyranose residues as fucopyranose and rhamnopyranose by analysis of the COSY spectrum.

Moreover, on acid hydrolysis 1 yielded rhamnose, fucose and glucose in the ratio of 1:1:2. The anomeric configuration of the glucopyranose and fucopyranose

Table 1. ¹³C and ¹H NMR data of compound 1 (C₅D₅N, TMS as int. standard)

	Aglycone moiety		
Atom.	1,C	DEPT	'Н*
1	38.65	(CH ₂)	1.08, 1.78
2	26.11	(CH_2)	2.05, 2.30
3	82.71	(CH)	4.15 (1H, m)
4	43.84	(C)	
5	47.84	(CH)	$1.70 \ (m)$
6	18.37	(CH ₂)	1.80, 1.62
7	32.53	(CH ₂)	1.23, 1.30
8	40.5	(C)	
9	54.84	(CH)	2.50
10	36.60	(C)	
11	126.49	(CH)	6.57 (1H, dd , $J = 10.6$, 1.5 Hz)
12	125.90	(CH)	5.67 (1H, d, J = 10.6 Hz)
13	136.36	(C)	
14	42.59	(C)	
15	32.53	(CH ₂)	1.66. 1.80
16	26.11	(CH ₂)	1.64. 1.78
17	40.64	(C)	
18	133.30	(C)	
19	38.39	(CH ₂)	2.07 (2H, d, J = 10 Hz)
20	33.07	(C)	
21	35.44	(CH ₂)	1.27 (2H, m)
22	29.33	(CH ₂)	1.20, 1.36
23	63.21	(CH_2)	3.59, 4.20 (q, J = 11.2 Hz)
24	12.86	(CH ₃)	1.02 (3H, s)
25	17.27	(CH ₃)	0.84(3H, s)
26	18.77	(CH ₃)	0.92(3H, s)
27	20.81	(CH ₃)	1.07 (3H, s)
28	64.69	(CH_2)	3.73 (2H, s)
29	33.07	(CH ₃)	0.94
30	24.70	(CH ₃)	0.94 (6H, s)

^{*} Individual protons assigned by 2D ¹H-¹H HOMOCOSY and ¹H-¹³C HETCOR.

Short Reports 1719

units was determined as β , due to the appearance of anomeric resonances as doublets ($J_{1,2} = 7.2 \cdot 7.5 \text{ Hz}$) in the ¹H NMR spectrum.

The interglycosidic linkage and sequence in the sugar chain in **1** was established by negative-ion FAB Mass spectrometry [2] together with 2D-NOESY spectrometry and by the glycosylation effects [3, 4, 8, 9] observed in the ¹³C NMR spectrum, as {-β-D-Glc-(1-2).α-L-Rha-(1-3)}-β-D-Fuc-(1-4)-Glc. The positions of the interglycosidic linkages between the monosaccharide units in **1** were found to be similar by comparison with the ¹³C chemical shifts of scrokoelziside A [2] and in view of the glycosylation effects observed in the ¹³C NMR spectrum [5, 7].

Thus the structure of scrokoelziside B could be assigned as 3β -O-([β -D-glucopyranosyl ($1 \rightarrow 2$)- α -L-rhamnopyranosyl ($1 \rightarrow 3$)]- β -D-flucopyranosyl ($1 \rightarrow 4$)- β -D-glucopyranosyl)-11,13(18)diene-olean- 23α . 28 diol. It is noteworthy that scrokoelziside A [2] and scrokoelziside B isolated from *Scrophularia koelzii* have the same oligosaccharide chain but differ in the aglycone moiety, whereas sangaro saponin A from *Verbascum sangaricum* [4] and ilwensisaponin B from *Scrophularia ilwensis* [10] have the same aglycone moiety but differ in the sugar sequence.

EXPERIMENTAL

General. Mps: uncorr; TLC: silica gel G (SISCO). Spots were visualized by spraying with 1% Ce(SO₄)₂ in 1 M H₂SO₄. CC: silica gel (60–120 mesh) (Sisco); Flash CC: EF-10 (Eyela) A.S.C. silica gel (230–400 mesh); PC: Whatman paper no. 1: GC: Steel column 2 m × 4 mm packed with 3% OV-25 on gas chrom. Q FID. temp [80–120]: N₂ at 50 ml min ⁻¹; ¹H, ¹³C and 2D NMR: C₃D₃N, using TMS as int. standard; MS: 70 eV. The matrix for the FAB-MS was glycerol. The isolation and experimental conditions were the same as those reported earlier [1].

Extraction and Isolation. The CHCl₃-soluble fr. (57.5 g) from the aerial parts of the plant Scrophularia koelzii was chromatographed over silica gel G with a discontinuous gradient of CHCl₃ and MeOH. The residue (18.1 g) from the (25–100%) CHCl₃-MeOH eluted frs was subjected to CC over silica gel with CHCl₃-MeOH (10–30%) gradient. The frs eluted with CHCl₃-MeOH (25–30%) yielded the compound 1-

containing fr. which on flash chromatography over silica gel CHCl₃-MeOH 18-19% followed by prep. TLC CHCl₃-MeOH-H₂O 35:12:2 afforded compound 1 (0.18 g) as an amorphous powder, $[\alpha]_D^{27} + 14^\circ$ (c, 0.09, pyridine).

Scrokoelziside B (1). IR (KBr) cm⁻¹: 3400, 1075 (OH), 2920: FAB-MS (negative) 3 kV, *m/z* (rel. int.): 1071 [M—H] · (100), 1069 (15), 927 (18), 925 (24), 909 (16), 763 (35), 619 (10), 457 (20); ¹H and ¹³C NMR (400 MHz: C₅D₅N): Table 1.

Hydrolysis of compound 1. Compound 1 (40 mg) refluxed with MeOH-1 M HCl for 5 hr and work up as usual. The aq hydrolysate was neutralized with BaCO₃ and filtered. The filtrate was evapd under red. pres. to dryness and acetylated with Py/Ac₂O. GC, with comparison with reference compounds, showed the presence of peracetyl rhamnose, peracetyl fucose and peracetyl glucose (1:1:2).

Acknowledgements—Thanks are due to the staff of RSIC for spectral data and the Director, CDRI for his interest in the work.

REFERENCES

- Bhandari, S. P. S., Mishra, A., Roy, R. and Garg, H. S., *Phytochemistry*, 1992, 31, 689.
- Bhandari, S. P. S., Roy, Raja, Agrawal, P. K. and Garg, H. S., *Phytochemistry*, 1996, 41 (3), 879.
- 3. Ding, N., Yahara, N. and Nohara, T., Chemical and Pharmaceutical Bulletin, 1992, 40, 780.
- Seifert, K., Preiss, A., Johne, S., Schmidt, J., Lien, N., Lavaud, C. and Massiot, G., *Phytochemistry*, 1991, 30, 3395.
- 5. Agrawal, P. K., Phytochemistry, 1992, 31, 3307.
- Liu, Z., Li, Du, Owen, N. L., Grant, D. M., Cates, R. G. and Jia, Q., *Journal of Natural Products*, 1995, 58 (10), 1600.
- Agrawal, P. K., Jain, D. C., Gupta, R. K. and Thakur, R. S., *Phytochemistry*, 1985, **24**, 2479.
- 8. Agrawal, P. K. and Bansal, M. C., in *Carbon-13 NMR of Flavonoids*, ed. P. K. Agrawal. Elsevier, Amsterdam, 1989, p. 283.
- Bhandari, S. P. S., Agrawal, P. K. and Garg, H. S., *Phytochemistry*, 1990, 29, 3889.
- Calis, I., Zor, M., Basaran. A. A., Wright, A. D. and Sticher, O., Helvetia Chimica Acta, 1993, 76 (3), 1352.