trans-Ozic acid

[5+2] cycloaddition

CYCLOADDUCTS OF TERPENE QUINONES FROM TAIWANIA CRYPTOMERIOIDES

WANG-HONG LIN, JIM-MIN FANG* and YU-SHIA CHENG

Department of Chemistry, National Taiwan University, Taipei, Taiwan 106, People's Republic of China

(Received 13 January 1997)

Key Word Index—*Taiwania cryptomerioides*; Taxodiaceae; leaves; diterpene quinones; ozic acid; cycloadducts.

Abstract—Four [4+2] or [5+2] cycloadducts formed from *trans*-ozic acid and a diterpene or norditerpene quinone were isolated from the leaves of *Taiwania cryptomerioides*. Among them, the [4+2] cycloadduct (taiwaniadduct I) formed from *trans*-ozic acid and a norditerpene quinone underwent an intramolecular [2+2] cycloaddition on standing at room temperature. The structures of these cycloadducts were determined by spectral analyses and of one by X-ray crystallography. © 1997 Elsevier Science Ltd. All rights reserved

INTRODUCTION

Taiwania cryptomerioides Hayata is an endemic evergreen species with thick linear-triangular leaves and elongate ovoid cones. The chemical constituents of this plant have been investigated extensively [1–3]. Various sesquiterpenes, lignans and bisflavones have been found in the leaves and wood. We recently isolated from this plant five diterpene quinones (taiwaniaquinones A–E), a diterpene quinol (taiwaniaquinol A), a norditerpenequinol (taiwaniaquinol B), and five related [4+2] and [5+2] cycloadducts (taiwaniadducts A–E) derived by the combination of taiwaniaquinone A with β -myrcene or trans-ozic acid [4, 5]. We report herein five new cycloadducts 1–5 (taiwaniadducts F–J) of such an uncommon type.

RESULTS AND DISCUSSION

Compound 1 gave rise to a molecular ion [M]⁺ at m/z 632.4075 consistent with a molecular formula $C_{40}H_{56}O_6$. By detailed analyses of its IR, and ¹H and ¹³C NMR spectra, the structure was assigned as a [5+2] cycloadduct of two diterpenes, taiwaniaquinone A and *trans*-ozic acid, with the linkages at C-8–C-15' and C-13–C-14' (Scheme 1). The ¹³C and ¹H NMR spectra (Table 1) showed the characteristic resonances of an aldehyde [$\delta_{\rm H}$ 10.23 (d) and $\delta_{\rm C}$ 205.9 (d)], a ketone [$\delta_{\rm C}$ 201.4 (s)], an enone [$\delta_{\rm C}$ 141.7 (s), 145.9 (s) and 195.1 (s)], an acid [$\delta_{\rm C}$ 184.7 (s)], a terminal

and H-15' (δ 2.44). The large coupling constant (13 Hz) between H-5 and H-7 was consistent with their trans relationship. Compound 1 (namely tai-

Taiwaniaquinone A

^{1 (}Taiwaniadduct F) Scheme 1.

double bond $[\delta_C \ 107.9 \ (t)]$ and $[\delta_C \ 130.4 \ (d)]$ and $[\delta_C \ 1]$ was supported by the HMBC and NOESY studies. The HMBC spectrum showed that H-14' ($\delta_C \ 3.15$) was correlated to C-12 ($\delta_C \ 195.1$) and C-13 ($\delta_C \ 73.3$), whereas the NOESY spectrum showed that H-7 ($\delta_C \ 2.82$) was correlated to H-20 ($\delta_C \ 1.21$) as well as H-5 ($\delta_C \ 2.00$) to H-6 ($\delta_C \ 10.23$)

^{*} Author to whom correspondence should be addressed.

Table 1. ¹³C and ¹H NMR data of compounds 1, 2m 4m and 5 (CDCl₃)

							(6)				
	_		2m		3т		4		S		
	δ_{c}	δн	$\delta_{\rm c}$	δн	$\delta_{\rm c}$	δн	$\delta_{\rm C}$	δ_{H}	δc	δ_{H}	
-	35.9	1.52 (m)*	36.6‡	*	35.7	1.48 (m)*	32.3	*	30.8	1.55 (m), 1.88 (m)	
7	18.3	*	18.5	1.54 (m)*	18.4	$1.45 (m)^*$	18.1	*	18.1	$1.44 (m)^*$	
3	41.0	1.14 (m), 1.44 (m)	43.6	1.06 (m), 1.34 (m)	41.9	*	41.7	$1.38 (m)^*$	41.1	0.96(m), 1.34(m)	
4	34.4		34.5		33.4		32.6		32.8		
S	57.3	2.00(d, 13.0)‡	63.5	2.15 (s)	55.3	1.42 (d, 12.0)	62.3	2.01 (s)	6.09	1.57 (s)	
9	205.9	10.23 (d, 4.4)	202.0	10.02 (d, 1.4)§							
7	55.1	2.82 (dd, 13.0, 4.4)	87.5		77.3	4.35 (dd, 12.0, 6.0)	204.8		206.5		
∞	0.99		73.8		59.4		9.99		68.1		
6	145.9		142.2		66.1		60.2		55.5		
10	46.8		42.9		47.4		46.6		49.9		
11	141.7		144.1		200.0		9.861		210.5		
12	195.1		194.5		159.8		160.1		92.7		
13	73.3		67.3		140.9		143.2		59.4		
4	201.4		201.8		205.1		192.9		207.1		
15	26.7	2.34 (m)	27.5	2.16 (m)	25.9	3.16 (sept, 6.9)	25.7	3.21 (sept, 7.0)	34.3	2.23 (sept, 6.8)	
91	16.9	1.00 (d, 7.0)	17.8	1.06(d, 6.9)	9.61	1.16 (d, 6.9)	19.9	1.17(d, 7.0)	20.6	1.23(d, 6.8)	
17	18.7	1.01 (d, 7.0)	18.1	1.06(d, 6.9)	20.7	1.22(d, 6.9)	20.6	1.15(d, 7.0)	21.6	0.88(d, 6.8)	
18	34.1	0.88 (s)	33.1	0.97(s)	35.4	0.97 (s)	32.6	1.07 (s)	32.6	1.07 (s)	
19	21.3	0.90 (s)	23.2	0.88 (s)	22.0	0.91 (s)	21.5	0.95 (s)	21.4	0.89 (s)	
20	19.1	1.21 (s)	24.5	1.48 (s)	21.0	0.69 (s)	21.3	0.78(s)	23.2	1.01 (s)	

`-	38.0	2.00 (m), 1.70 (m)	38.1†	*	37.5‡	*	37.1‡	$1.52 (m)^*$	39.2	1.64 (m), 0.71 (m)
,,	19.1	*	19.5	*	19.2	*	19.0	*	18.6	$1.56 (m)^*$
'n	36.9	*	37.0+	*	36.8	$1.48 \ (m), 1.93 \ (m)$	37.5‡	*	36.0	1.44 (m), 1.58 (m)
, 4	47.3		47.7		47.7		47.6		47.7	
· 'n	49.3	1.90(m)	49.8	1.92 (dd, 12.2, 2.7)	50.1	1.83 (dd, 12.4, 2.7)	50.2	1.88 (m)	48.0	1.35 (m)
وز ،	26.5	1.34 (m)*	26.5	1.18 (m)*	24.9	$1.56 (m)^*$	26.7	*	21.3	$1.06 (m)^*$
7,	37.4	2.28 (m)*	37.5‡	*	37.84	$2.30 (br d, 12.0)^3$	37.9†	2.27 (br d, 10.9)*	33.8	$1.98 \ (m), 1.60 \ (m)$
òc	147.5		147.8		147.1		149.0		53.8	
ò 6	56.9	1.60 (m)	56.7	1.76 (m)	54.0	1.64 (m)	55.9	1.70 (m)	48.0	1.16 (m)
10,	38.6		38.8		38.8		40.7		39.9	
11,	22.5	2.12 (m)*	23.3	*	26.8	*	23.3	*	29.0	2.02 (m), 1.80 (m)
12′	130.4	5.05 (br s)	132.4	5.07 (br t, 5.2)	41.3	3.07 (dd, 11.8, 3.9)	51.5	*	49.2	2.88(m)
13,	131.5		134.0		143.0		140.8		136.1	
· <u>4</u>	45.5	3.15 (dd, 10.6, 6.1)	44.5	3.29 (t, 10.0)	122.0	5.64 (br d, 7.1)	123.4	5.63 (br t, 5.0)	121.6	5.51 (br d, 5.6)
15,	38.0	2.44 (m)*	33.0	2.32 (m)*	30.6	2.17 (br d, 15.0),	28.7	2.56 (m)*	29.9	2.80 (m)
<u>.</u>						2.42 (dd, 15.0, 7.8)				2.45 (br d, 20.0)
16,	16.1	1.40 (s)	18.8	1.78 (s)	24.3	1.72 (s)	23.0	1.57 (s)	22.2	1.59 (br s)
17′	107.9	4.37 (s), 4.77 (s)	108.2	4.37 (s), 4.75 (s)	108.7	4.61 (s), 4.90 (s)	107.0	4.69(s), 4.42(s)	45.4	2.32 (d, 12.0),
										2.77 (d, 12.0)
<u>×</u>	184.7		179.2		179.2		179.2		178.8	
19′	16.3	1,11 (s)	16.7	1.13 (s)	16.5	1.08 (s)	16.5	1.07 (s)	17.1	1.08 (s)
20′	14.5	0.67 (s)	14.6	0.71(s)	15.2	0.58 (s)	14.4	0.64 (s)	15.1	0.67 (s)
CO.CH,			51.9	3.65 (s)	51.9	3.63 (s)	51.9	3.62 (s)	52.0	3.60 (s)
OCH,					0.09	3.99 (s)	59.9	3.86 (s)	55.1	3.47 (s)

* The signal of one or both protons was too weak to be assigned.

† Assignments may be exchanged.

‡ Coupling constants (J in Hz) in parentheses.

\$ Coupled with 7-OH (\$ 4.24).

172 W.-H. Lin et al.

waniadduct F) is a regioisomer of taiwaniadduct E [5], which is a cycloadduct between taiwaniaquinone A and *trans*-ozic acid with the linkages at C-8-C-14' and C-13-C-15'.

Compound 2 was not readily purified. It was, therefore, subjected to methylation (CH₂N₂, Et₂O) and purified as its methyl ester 2m. Ester 2m ($C_{41}H_{58}O_7$), [M]⁺ at m/z 662.4184, showed ¹H and ¹³C resonances similar to those in taiwaniadduct E methyl ester [5], except for lack of the H-7 signal. The C-7 resonance of 2m occurred at δ 87.5 (s), indicating the presence of a tertiary hydroxyl group at this position. Compound 2 (taiwaniadduct G) was thus a [5+2] cycloadduct between taiwaniaquinone C and trans-ozic acid with the linkages at C-8-C-14' and C-13-C-15' (Scheme 2). The C-10 methyl group (δ 1.48) and the C-7 aldehyde group (δ 10.02) had to be on the same face as they showed NOE correlation in the NOESY spectrum of 2m. The HMBC spectrum of 2m also showed the correlation of C-12 (δ 194.5) with H-15' (δ 2.32), supporting the regiochemistry of the C-13-C-15' linkage.

Compound 3 was treated with CH_2N_2 to give a bismethylated product 3m, in which the two new methyl groups appeared at δ 3.63 and 3.99 attributable to the ester and enol ether moieties. Compound 3m also had the characteristic resonances for two carbonyl groups $[\delta_C$ 200.0 (s) and 205.1 (s)], a terminal double bond $[\delta_C$ 108.7 (t) and 147.1 (s)], a trisubstituted double bond $[\delta_C$ 122.0 (d) and 143.0 (s)], as well as a secondary hydroxyl group $[\delta_C$ 77.3 (d)]. Compound 3m gave rise to a molecular ion $[M]^+$ at m/z 648.4394 consistent with the molecular formula $C_{41}H_{60}O_6$. Based on the above spectral data, the parent acid 3 (taiwaniadduct H) was deduced to be a [4+2]

cycloadduct of a norditerpene alcohol **6** and *trans*-ozic acid (Scheme 3). The structure was finally deduced from the HMBC spectrum of **3m**, in which the correlation of C-7 (δ 77.3) to C-15′ (δ 30.6) was confirmed. The stereochemistry was established by the NOESY spectrum, in which H-5 (δ 1.42) was correlated with H-12′ (δ 3.07) and H-7 (δ 4.35) with H-20 (δ 0.69). The large coupling constant (12 Hz) for H-5 and H-7 was in agreement with their *trans* relationship. Thus, **3** is formed by combination of two components with the linkages at C-8–C-15′ and C-9–C-12′.

Treatment of compound 4 with CH_2N_2 gave a bismethylated product 4m ($C_{41}H_{58}O_6$), [M]⁺ at m/z 646.4240. Compound 4m yielded a crystalline compound 5 on standing at room temperature for three weeks (Scheme 4). The structure of 5 was unambiguously determined by X-ray crystallography (Fig. 1). Thus, 5 (taiwaniadduct J) is derived from 4m via an intramolecular [2+2] cycloaddition with the linkages at C-12–C-8′ and C-13–C-17′. Compound 4 (taiwaniadduct I) is a [4+2] cycloadduct of the norditerpene 7 and trans-ozic acid with the linkages at C-8–C-12′ and C-9–C-15′. The cycloaddition occurs on the less hindered face of 7 to give 4 having the (8R, 9R, 12′R)-configuration.

EXPERIMENTAL

General. HPLC: Hibar Lichrosorb Si 60 column (10 μ m, 25 cm × 1 cm i.d.); TLC: Merck silica gel 60F sheets.

Plant material. The dried leaves (1.75 kg) of T. cryptomerioides were exhaustively extracted with

Me₂CO (7 1×3). The combined extracts were concd to ca 0.8 l, and taken up with CHCl₃ (0.8 1×3). The CHCl₃-soluble portion was concd (55 g) and subjected to silica gel CC. The portion obtained from elution with EtOAc–hexane (1:1) was further subjected to flash chromatography and HPLC to give compounds

Scheme 4.

5 (Taiwaniadduct J)

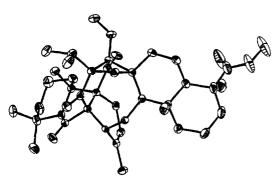


Fig. 1. ORTEP drawing of compound 5.

1 (130 mg), 2 (43 mg), 3 (22 mg) and 4 (27 mg). Acids 2-4 were further transformed into their corresponding methyl ester derivatives 2m-4m, which were purified by HPLC.

Taiwaniadduct F (1). Solid, mp 128–129°, [α]_D²³ –120.3° (CHCl₃; c 6.5). TLC (20% EtOAc in hexane) R_f 0.29; IR $v_{\rm max}^{\rm KBr}$ cm⁻¹: 3379, 1742, 1700, 1683, 1625; FAB (+): 633.5 [M+1]⁺; HR-MS for $C_{40}H_{56}O_6$ requires: 632.4079. Found: 632.4075.

Taiwaniadduct G (**2**). Compound **2** (43 mg) was treated with CH₂N₂ in Et₂O to give the monomethylated compound **2m** (38 mg). Solid, mp 112–114°, [α]_D²³ +27.6° (CHCl₃; *c* 1.9). TLC (20% EtOAc in hexane) R_f 0.66; IR $\nu_{\rm max}^{\rm RB}$ cm⁻¹: 3422, 1740, 1716, 1666, 1630; EIMS (70 eV) m/z (rel. int.): 662 [M]⁺ (0.2), 644 (0.4), 601 (1.6), 531 (0.7), 348 (35), 319 (100); HR-MS for C₄₁H₅₈O₇ requires: 662.4184. Found: 662.4184.

Taiwaniadduct H (3). Compound 3 (22 mg) was treated with CH₂N₂ in Et₂O to give the bismethylated compound 3m (17.4 mg). Solid, mp 154–156°, [α]_D²³ +9.3° (CHCl₃; c 0.87). TLC (20% EtOAc in hexane) R_f 0.66; IR $\nu_{\rm max}^{\rm KBr}$ cm⁻¹: 3497, 1715, 1655; FAB (+): 649.6 [M+1]⁺; HR-MS for C₄₁H₆₀O₆ requires: 648.4392. Found: 648.4394.

Taiwaniadduct I (4). Compound 4 (27 mg) was treated with CH₂N₂ in Et₂O to give the bismethylated compound 4m (22 mg). IR $v_{\text{max}}^{\text{KBr}}$ cm⁻¹: 1737, 1717, 1666, 1598; EIMS (70 eV) m/z (rel. int.): 647 [M+1]⁺ (15), 646 [M]⁺ (5), 632 (15), 494 (15), 332 (55), 315 (65), 246 (100), 151 (50); HR-MS for C₄₁H₅₈O₆ requires: 646.4235. Found: 646.4240.

Taiwaniadduct J (5). The ester **4m** underwent a [2+2] cycloaddition on standing at room temp. to give 5. Recrystallization from EtOAc–hexane (3:47) gave a colourless sample for X-ray analysis. Mp: 132–134°, [α]_D²³ +68.7° (CHCl₃: c 0.68). TLC (20% EtOAc in hexane) R_f 0.66; IR $v_{\rm max}^{\rm KBr}$ cm⁻¹: 1741, 1720, 1672; FAB (+): 647.3 [M+1]⁺; HR-MS for C₄₁H₅₈O₆ requires: 646.4235. Found: 646.4241.

Acknowledgements—We thank the National Science Council for financial support and Mr Gene-Hsian Lee (Advanced Instrumentation Centre) for the X-ray diffraction.

REFERENCES

- Kamil, M., Ilyas, M., Rahman, W., Hasaka, N., Okigawa, M. and Kawano, N., Journal of the Chemical Society, Perkin Transactions I, 1981, 553.
- Kuo, Y.-H., Chen, W.-C. and Lin, Y.-T., Chemical Express, 1987, 2, 105.
- 3. Fang, J.-M. and Cheng, Y.-S., Journal of the Chinese Chemical Society (Taipei), 1992, 39, 647.
- Lin, W.-H., Fang, J.-M. and Cheng, Y.-S., *Phytochemistry*, 1995, 40, 871.
- Lin, W.-H., Fang, J.-M. and Cheng, Y.-S., *Phytochemistry*, 1996, 42, 1657.