

PII: S0031-9422(97)00311-7

GUAIANOLIDES AND GERMACRADIENOLIDES FROM STEVIA SANGUINEA

Zaida N. J. de Hernández, Luis R. Hernández, César A. N. Catalán, Thomas E. Gedris* and Werner Herz*†

Instituto de Química Orgánica, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 491, 4000 S. M. de Tucumán, Argentina; *Department of Chemistry, The Florida State University, Tallahassee, FL 32306-3006, U.S.A.

(Received in revised form 18 February 1997)

Key Word Index—Stevia sanguinea; Eupatorieae; Compositae; guaianolides; germacradienolides; heliangolide; sesquiterpene lactones.

Abstract—Reinvestigation of aerial parts of *Stevia sanguinea* afforded twelve new and five known guaianolides, one previously known guaianolide whose structure was revised, one new and one known germacradienolide and one new heliangolide. © 1997 Elsevier Science Ltd. All rights reserved

INTRODUCTION

Stevia sanguinea Hieron. (Asteraceae, Eupatorieae) is an endemic of northwestern Argentina found at altitudes of 1500-2500 m [1]. A report has described the isolation of the guaianolides 1a, 2a, a guaianolide tentatively ascribed formula 3 and a mixture of the latter with what was possibly 4 from a small collection from Salta province [2]. We have now studied a somewhat larger collection of the plant material from a slightly different location. HPLC of the extract furnished the guaianolides 1a [2], 1b earlier found in Helianthus microcephalus [3], 1c, 2a [2], 2b-d the last previously isolated from Trichogonia santosii [4] as well as from Helianthus microcephalus [3, 5], 2e, 5a identical with the lactone tentatively ascribed formula 3 [2], 5b-d, 6-9, 10 [3] admixed with 11, the germacradienolides 12a and 12b, the former previously reported from Eupatorium scabridum [6], and the heliangolide 13.

RESULTS AND DISCUSSION

The structure of 1c followed from the ¹H NMR and mass spectral data (Table 1) which compared with that of the known 1a [2] except for a small upfield shift of the H-15 resonance and the additional signals of the epoxyangelate ester. Structures of 2b, c and 2e were also easily deduced from the ¹H NMR and mass spectra, the latter in Table 2, when compared with those of the known 2a [2] and 2d [3-5].

The ring-A stereochemistry in formula 3 was ten-

tatively ascribed to a guaianolide isolated from the earlier collection of Stevia sanguinea on the basis of NOE data [2]. Reexamination has shown that these are equally compatible with the stereochemistry shown in formula 5a; in fact the ring-A frequencies and coupling constants correspond in all respects to analogous 2-hydroxy-3,4-epoxyguaianolides assigned the 2α-hydroxy-3α,4α-epoxy-configuration (e.g. compound 3c of ref. [7] and compound 7a of ref. [8]) and not to the isomeric 2β -hydroxy- 3β , 4β -epoxyguaianolide 8a of ref. [8]. H NMR spectra of the new analogs 5b, c, d carrying a second acyl group on C-2 are listed in Table 2. In the case of 5b the chemical shifts of the protons associated with the second angelate attached to C-2 differ somewhat from those associated with the angelate attached to C-8 (compare 5b with 2a-c, 7, 9, 10 and 11); consequently in 5c where the angelate frequencies correspond to those of the second angelate of 5b, the angelate is on C-2 and the epoxyangelate is on C-8. In the case of 5d the epoxyangelate frequencies correspond to those of 2d and 2e; consequently we place the 2-methylbutyrate on C-2.

Structure assignment to a further guaianolide whose ¹H NMR spectrum (Table 1) resembled that of 1c initially caused some difficulty; however, the upfield shift of the H-15 resonance, the mass spectrum which indicated the molecular formula $C_{20}H_{22}O_7$ and the presence in the ¹H NMR spectrum of a strong hydroxyl absorption at δ 5.55 eventually led to its formulation as 6. The stereochemistry assigned to C-4 is based on the absence of a NOE between H-5 and H-15.

Guaianolide 7 (Table 2) lacked the C-1 hydroxyl

[†] Author to whom correspondence should be addressed.

group of lactones 5a–d. Its absence caused an upfield shift on the H-5 resonance which, however, remained long range coupled to H-3 and H-14 as in compounds 5a–d, thus indicating that the stereochemistry of the epoxide was the same. Chemical shifts of the ring-A protons were essentially identical with those of 3,4- α -epoxy- 8α -angelyloxy- 9β -acetoxy-guaia-1(10),11(13)-dien-6,12-olide from *Helianthopsis helianthoides* [7] and with those of bacchariolide B. For the latter a β -epoxide ring has been proposed [9] although the literature data do not exclude the α -configuration.

In guaianolide 8 the 1(10)-double bond of preceding compounds was shifted to the 10(14)-position and the 3,4-epoxide of 5a-d and 7 was absent as evidenced by the ¹H NMR spectrum (Table 3). Spin decoupling in

the usual fashion located the angelate on C-8 and the hydroxyl group on C-2. However the chemical shifts of H-1, H-5, H-6 and H-9a,b and the coupling constants involving H-2, in particular $J_{1,2}=3.5$ Hz, were significantly different from similar guaianolides with a β -hydroxyl on C-2 [10, 11]. Consequently the 2-hydroxyl was α -orientated.

Lactone 9 was at first thought to be the 2β , 3β -epoxy analog of 5a since $J_{2,3}$ was 4.5 Hz compared with $J_{2,3} = 2$ Hz in the 5a-d series and since H-3 was not W-coupled to H-5 as in 3α , 4α -epoxyguaianolides. However the mass spectrum indicated the presence of a ring-A triol, with the signals of H-2 and H-3 at somewhat lower and H-5 at somewhat higher field (δ 4.98, 3.75 and 2.97) than in 5a (H-2, H-3 and H-5 at

Table 1. ¹H NMR spectra of compounds 1c and 6 (500 MHz, CDCL)

	CDCI	6)	
Н	1c	6	
5	3.41 br d	3.20 br d	
6	4.87 br d	5.08 br d	
8	6.23 d	6.19 d	
9	6.60 br d	6.60 br d	
13*	2.00 d	1.99 d	
14*	2.46 d	2.38 d	
15*	2.18 br s	1.66 br s	
3′	3.14 q	$3.10 \; q$	
4′*	1.51 d	1.46 d	
5′*	1.70 s	1.46 s	
-ОН		5.55 s	

^{*} Intensity 3 protons.

J (Hz): 5, 6 = 11.5; 5, 14 = 6, 13 = 1.5; 5, 9 = 1; 8, 9 = 12, 3', 4' = 5.5.

 δ 4.68, 3.58 and 3.22). Consequently we suggest the ring a stereochemistry shown in 9.

The ¹H NMR data of guaianolide 11 listed in Table 3 were obtained from a mixture containing 10 [3] as the minor component. The mass spectrum of the mixture indicated that the empirical formula of the major component was $C_{20}H_{24}O_8$ with a facile loss of two molecules of water and one molecule of epoxyangelic acid. Spin decoupling in the usual way located the signals of H-5 through H-9, established the location of the epoxidic proton at C-2 and showed that the two hydroxyls were attacked to C-1 and C-

10 although their stereochemistry could not be established.

Structures of germacradienolide 12b and heliangolide 13 were evident from the 1H and NMR mass spectra (Table 3). In compound 12b the chemical shifts and coupling constants involving H-3 and H-8 showed that the hydroxyl on C-3 was α - and the ester function on C-8 was β -orientated, whereas for compound 13 the coupling constants involving H-13 and the shifts of H-3 and H-8 showed that it was a heliangolide with an α -orientated ester on C-3 and a β -orientated ester on C-8. The angelate was sited on C-8 by analogy with the other lactones identified in the extract.

EXPERIMENTAL

General. For sepn of mixts HPLC with a differential refractometer was used. The columns employed were (A) Beckman C-18 (5 μ m, 10 × 250 mm) and (B) Beckman C-8 (5 μ m, 10 × 250 mm). R_i s were measured from the solvent peak.

Plant material. Stevia sanguinea Hieron. was collected at the flowering stage on March 30, 1991 near Dique La Caldera, Salta province, Argentina. A voucher specimen (Catalán #203) is on deposit in the herbarium of the Instituto Miguel Lillo, Tucumán.

Extraction and Isolation. Flowers and leaves (207 g) were extracted with CHCl₃ (2×21) at room temp. for 4 days to give 18 g of crude extract which was suspended in EtOH (154 ml) at 60° , diluted with H₂O (116 ml) and extracted with petrol (3×300 ml) and

Table 2. 'H NMR spectra of compounds 2b, c, e, 5b-d 7 and 9 (CDCI,, 500 MHz)

			•					
н	2b	2c*	2e (300 Mz)	Sb‡	Sc (300 Mz)§	5d (300 Mz)¶	7	6
			1	5.81 quint	5.83 quint	5.78 quint	2.75 dd	4.98 d
				(1.5)	(1.5)	(I)	(18, 1)	(4.5)
2 b	-	1		-		I	2.49 dd (18-1)	-
"	J	1	1	3.71 dd	3.73 br d	3.68 br d		3.75 d
ì				(1.5, 1)	(1.5)	(1.5)		(4.5)
5	3.57 br d	3.50 br d		3.32 d quint	3.33 d quint	3.33 d quint		2.97 ddq
	(10)	(11)		(10.5, 1)	(11, 1)	(11, 1)		(10, 1.5, 1.5)
9	4.03 /	4.05 dd		4.06 dd	4.06 dd	4.09 t		4.41 (
	(10)	(11, 10)		(10.5, 10)	(11, 10.5)	(11)		(10)
7	3.15 dddd	3.12 dddd		3.03 dddd	3.04 dddd	3.04 dddd		3.07 dddd
	(10, 3.5, 3, 2)	(10, 3, 3, 2)	_	(10, 3, 2.5, 2)	(10.5, 3.5, 3, 2)	(11, 3.5, 3.5, 2)		(10, 3, 2.5, 1.5)
∞	5.76 ddd	5.74 ddd		5.61 ddd	5.69 ddd	5.69 ddd		5.67 ddd
	(6.5, 2, 2)	(6.5, 2, 1.5)		(6.5, 2, 2)	(6.5, 2, 2)	(6.5, 2, 2)		(6, 2, 1.5)
9a	2.93 dd	2.87 dd		2.66 dd	2.64 dd	2.64 dd		2.66 dd
	(16, 6.5)	(15, 6.5)		(15, 6.5)	(16, 6.5)	(16, 6.5)		(15, 6)
96	2.74 br dd	2.71 br dd		2.51 br dd	2.54 br dd	2.54 br dd		2.51 ddqd
	(16, 2)	(15, 1.5)		(15, 2)	(16, 2)	(16, 2)		(15.5, 2, 1, 1)
13a	6.25 d	6.23 d		6.21 d	6.21 d	6.21 d		6.25 d
	(3)	(3)		(3)	(3.5)	(3.5)		(3)
136	5.54 d	5.52 d		5.47 d	5.42 d	5.43 d		5.54 d
	(3)	(3)		(2.5)	(3)	(3.5)		(2.5)
14†	2.39 br s	2.33 br s	2.45 br s	1.62 br s	1.69 br s	1.69 br s		1.91 t
								(1.5)
15†	2.36 br s	1.79 br s	2.39 d	1.68 s	1.67 s	1.67 s		1.62 s
,					, 00 6	, 00 ,		LO 3
3,	6.09	6.07 qq		6.09 qq	3.00 q	3.00 4		6.07
	(7, 1.5)	(7,1.5)		(7, 1.5)	(9)	(9)		(7, 1.5)
4,4	1.88 dq	1.88 dq		1.92 dq	1.22 d	1.21 d		1.92 dq
	(7, 1.5)	(7, 1.5)		(7, 1.5)	(9)	(9)		(7, 1.5)
5.†	1.73 quint	1.75 quint		1.78 quint	1.45 s	1.45 s		1.81 quint
	(1.5)	(1.5)		(1.50)				(1.5)

^{*} From mixture with 2a.
† Intensity three protons.
† 3" 6.08 qq, 4" 1.99 dq, 5" 1.89 quint.
§ 3" 6.10 qq, 4" 1.99 dq, 5" 1.89 quint.
¶ 2" 2.45 sext (7), 3" a 1.98 m, 3"b 1.88 m, 4" 0.93 t (7)t, 5" 1.16 d (7)t.

Table 3. ¹H NMR spectra of compounds 8, 11, 12b and 13 (500 MHz, CDl₃)

Н	8*	11†	12b	13
1	2.92 br dd		4.91 ddd	5.06 br t
	(8, 3.5, 1)		(13, 4.5, 1)	(8)
2a	4.78 dq		2.48 ddd	2.75 m
	(3.5, 1.5)		(14, 6, 4.5)	
2b	_	_	2.31 ddd	obsc.
			(14, 6, 4.5)	
3	5.70 sext	2.99 br d	4.33 dd	5.57 br dd
	(1.5)	(1.5)	(10, 6)	(11, 5)
5	3.04 ddquint	2.91 dd	4.84 dq	5.19 dquint
	(11, 8, 1.5)	(2, 1.5)	(10, 1)	(10.5, 1.5)
6	4.42 dd	4.88 dd	5.18 dd	5.23 br d
	(11, 9)	(11, 2)	(10, 8.5)	(10.5)
7	3.16 ddd	3.07 ddd	2.89 ddd	2.97 br s
	(9, 3.5, 3.5, 2.5)	(5.5, 1.5, 1.5)	(8.5, 3.5, 3.5, 1.5)	
8	5.62 ddd	5.69 ddd	5.76 ddd	5.27 br t
	(5.5, 5.5, 2.5)	(5.5, 1.5, 1.5)	(6, 2, 1.5)	(3)
9a	2.68 br dd	2.25 br dd	2.86 ddd	2.71 <i>dd</i>
	(14, 6)	(17, 1.5)	(15, 6, 1)	(14.5, 3.5)
9b	2.49 br dd	1.93 <i>dd</i>	2.31 <i>dd</i>	2.37 dd
	(14, 5.5)	(17, 1.5)	(15, 2)	(14.5, 3.5)
13a	6.30 d	6.27 <i>d</i>	6.31 d	6.35 d
	(3.5)	(3)	(3.5)	(2)
13b	5.55 d	5.49 d	5.61 d	5.73 d
	(3.5)	(3)	(3.5)	(2)
14a	4.95 br s	1.24 s‡	1.53 br s‡	1.89 br s‡
14b	4.92 br s	·	•	•
15‡	1.93 q	1.56 s	1.78 d	1.78 d
•	(1)		(1)	(1.5)
H-3'	6.04 <i>qq</i>	3.04 q	6.09 <i>qq</i>	6.07 ag
	(7, 1.5)	(5.5)	(7, 1.5)	(7, 1.5)
H-4'‡	1.89 dq	1.30 d	1.98 dq	1.94 dq
•	(7, 1.5)	(5.5)	(7, 1.5)	(7, 1.5)
H-5′‡	1.77 quint	1.54 s	1.87 quint	1.85 quint
T	(1.5)		(1.5)	(1.5)
Ac‡	(= /		()	2.07 s

^{*} $J_{1,3} = J_{2,5} = J_{3,5} = J_{3,15} = J_{5,15} = 1.5 \text{ Hz}; J_{1,14a} = J_{9a,14a} = J_{9a,14b} = 1 \text{ Hz}.$

then with CHCl₃ (3×300 ml). Evapn of the CHCl₃ extracts at red. pres. furnished 7.8 g of residue which was chromatographed over silica gel (180 g) using CHCl₃ containing increasing amounts of MeOH (0–20%), 192 frs being collected and monitored by TLC.

Frs 122–140 (75 mg) were combined and processed by HPLC (column A, MeOH– H_2O 2:1, 2 ml min⁻¹) to give 4 mg of 1a (solid, mp not determined, R_t 10.8 min), 12 mg of a mixt. of 2a and 2c (mp 162–165°, R_t 12.5 min), 2 mg of 13 (R_t 21.5 min), 5 mg of 2b (solid, mp not determined, R_t 24.5 min), 3 mg of 5b (R_t 60.5 min) and 12.2 mg from a broad peak (R_t 6 min) which was rechromatographed on column B (MeOH– H_2O 3:2, 1.5 ml min⁻¹) to give 1.6 mg of a sesquiterpene lactone mixt. (R_t 14.7 min), 3.4 mg of 1b (solid, mp not determined, R_t 16 min), 1.9 mg of an acetate $C_{14}H_{22}O_2$ (R_t 19 min), MS PCI (i-butane) m/z (rel. int.) 223 (100) and 2 mg of a sesquiterpene lactone mixt.

The ¹H NMR spectrum (500 MHz, CDCl₃) of the acetate exhibited mutually coupled signals of a methylene group at δ 2.52 ddd (J = 16, 9.5, 6.5 Hz) and 2.47 ddd (J = 16, 9.5, 6.5 Hz), 2.15 s (3H, Ac), 2.12 m, 2.03–1.97 c (3H), 1.83 ddd (J = 5, 5, 4.5 Hz) coupled to signals at δ 2.12 m, 1.72 c and 1.01 ddd, mutually coupled signals at δ 1.77 c and 1.72 c, the latter coupled to two superimposed methyl doublets at δ 0.91 d (J = 7 Hz, 6H), 1.67–1.62 c (2H), 1.01 ddd (J = 9.5, 4.5, 3 Hz) coupled to the δ 1.83 multiplet by 4.5 Hz to 1.62 m by 3 Hz and to 0.69 dddd (J = 9.5, 8.5, 5.5 and 4.5 Hz) by 4.5 Hz. The 0.69 dddd was also coupled to 1.77 c, 1.72 c and 1.62 c.

Frs 141–143 (316 mg) were combined. A portion (170 mg) was processed by HPLC (column A, MeOH– $\rm H_2O$ 2:1, 2 ml min⁻¹) to give 32.1 mg of 2d (R_t 3.8 min), 3 mg of 7 (R_t 5.5 min), 2 mg of 1b (solid, R_t 6.5 min), 28 mg of 2a (solid, mp 186–194° without

[†] From mixture of 10 and 11.

[‡] Intensity three protons.

recrystallization, R_t 14 min), 4 mg of **5c** (R_t 18.5 mg), 3 mg of **5d** (R_t 19.5 min) and 17.5 mg of a mixt. (R_t 7.5–9.5 min) which was rechromatographed on the same column (MeOH–H₂O 3:2, 1.5 ml min⁻¹) to yield 2.3 mg of **5a** (R_t 20.5 min), 5.5 mg of **2e** (solid, mp not determined, R_t 23.2 min) and 4.9 mg of **1c** (R_t 26.2 min).

Frs 144–151 (1.3 g) were combined and a portion (240 mg) was processed by HPLC (column A, MeOH– $\rm H_2O$ 2:1, 1 ml min⁻¹) to give 6 mg of 2d (R_i 8 min), 3 mg of 6 (R_i 10.5 min), 3 mg of 8 (R_i 29.2 min) and two broadened peaks, R_i 7 min and 14.5 min, which were rechromatographed on column A and column B, respectively, MeOH– $\rm H_2O$ 3:2, 1.5 ml min⁻¹) to give 2.5 mg of a mixt. and 12.9 mg of 2d from column A and 1.8 mg of a mixt. 15.5 mg of 5a (solid, mp 74–76°) and 5.7 mg of 2e from column B.

Frs 152–161 (752 mg) were combined and a portion (200 mg) was processed by HPLC (column A, MeOH– $\rm H_2O$ 2:1, 1 ml min⁻¹) to yield 5.6 mg of **12b** (R_t 27.2 min) and a mixt. (R_t 3 min) which was rechromatographed on column B (MeOH– $\rm H_2O$ 1:1, 1.5 ml min⁻¹) to give 6.1 mg of a mixt. (R_t 8.8 min) of **10** (minor constituent) and **11** (major constituent) and 2.3 mg of unidentified material (R_t 13.2 min). HPLC (column B, MeOH– $\rm H_2O$ 3:2, 2 ml min⁻¹) of frs 172–175 (25 mg) gave 2.5 mg of **9** (R_t 8.5 min) HPLC (column B, MeOH– $\rm H_2O$ 3:2, 1.5 ml min⁻¹) of a portion (170 mg) of frs 176–192 (2.7 g) furnished 22 mg of **12a** (R_t 9.5 min).

(5S*,6R*)-3-Epoxyangelyloxy-2-oxoguaia-1(10),3,7(11),8-tetraen-6,12-olide (1c). Gum; MS PCI (*i*-butane) m/z (rel. int.): 357 (100 [$C_{20}H_{20}O_6 + H^+$]), 1H NMR in Table 1.

(5S*,6R*,7R*,8R*)-8-Angelyloxy-3-chloro-2-oxoguaia-1(10),3,11(13)-trien-6,12-olide (**2b**). Solid, mp not determined; MS PCI (*i*-butane) m/z (rel. intensity): 379 (33.5 $[C_{20}H_{21}O_5Cl^{37} + H^+]$), 377 (100 $[C_{20}H_{21}O_5Cl^{35} + H^+)$; ¹H NMR in Table 2.

Mixture of $(5S^*,6R^*,7R^*,8R^*)$ -8-Angelyloxy-2-oxo-guaia-1(10),3,11(13)-trien-6,12-olide and 8-angeloxy - 3 - hydroxy - 2 - oxo - 1(10),3,11(13) - trien-6, 12-olide (**2a** [2] and **2c**). Gum; MS PCI (*i*-butane) m/z (rel. int.); 359 (46.8 [M of **2c**+H⁺]), 343 (100 [M+H⁺ of **2a**]), 259 (43.2 [M+H⁺-C₅H₈O₂ of **2c**]), 243 (24.1 [M+H⁺-C₅H₈O₂ of **2a**]) 101 (18.3 [C₅H₈O₂]), ¹H NMR of **2c** in Table 2).

(5S*,6R*,7R*,8R*)-3-Chloro-8-epoxyangelyloxy-2-oxoguaia-1(10),3,11(13)-trien-6,12-olide (**2e**). Solid; mp not determined; MS PCI (*i*-butane) m/z (rel. int.): 395 (34.9 [C₂₀H₂₁O₆Cl³⁷+H⁺]), 393 (100 [C₂₀H₂₁O₆Cl³⁵+H⁺]); ¹H NMR in Table 2.

 $\begin{array}{lll} (2R*,3R*,4S*,5S*,6S*,7R*,8R*)-2,8-Diangelyl-oxy-3,4-epoxyguia-1(10),11(13)-dien-6,12-olide & \textbf{(5b)}.\\ Gum; \ MS \ PCI \ (\emph{i}\text{-butane}) \ \emph{m/z} \ (\text{rel. int.}) \ 443 \ (12.7 \ [M+H^+]), \ 343 \ (100 \ [M+H^+-C_5H_8O_2]), \ 243 \ (7.2 \ [M+H^+]-2x \ C_5H_8O_2]), \ ^1H \ NMR \ \text{in Table 2}. \end{array}$

(2R*,3R*,4S*,5S*,6S*,7R*,8R*)-2-Angelyloxy-8-epoxyangelyloxy-3,4-epoxyguia-1(10),11(13)-dien-6,12-olide (5c). Gum; MS PCI (i-butane) m/z (rel. int.)

459 (5.8 [M + H⁺]), 117 (7.6 [$C_5H_8O_3 + H^+$]), 101 (37.7 [$C_5H_8O_2 + H^+$]), 73 (100); ¹H NMR in Table 2.

 $(2R^*,3R^*,4S^*,5S^*,6S^*,7R^*,8R^*)$ -2-(2-methylbut-anoxyloxy-8-epoxyangelyloxy-3,4-epoxyguaia-1(10), 11(13)-dien-6,12-olide (**5d**). Gum; MS PCI (*i*-butane) m/z (rel. int.) 461 (26.2 [M+H⁺]), 359 (100 [M+H⁺-C₅H₁₀O₂]), 345 (38.8 [M+H⁺-C₅H₈O₃]), 243 (8.8 [M+H⁺-C₅H₁₀O₂-C₅H₈O₃]), 103 (2.2); ¹H NMR in Table 2.

(4R*,5S*,6R*)2,4-Dihydroxy-3-epoxyangelyloxy guaia-1(10),2,7(11),8-tetraen-6,12-olide (6). Gum; MS PCI (i-butane) m/z (rel. int.) 375 (22.7 [C₂₀H₂₂O₇+H⁺]), 357 (100 [M+H⁺-H₂O]), ¹H NMR in Table 1.

 $(3R^*,4S^*,5S^*,6S^*,7R^*,8R^*)$ -8-Angelyloxy-2,3,4-trihydroxyguaia-1(10),11(13)-dien-6,12-olide (7). Gum; MS PCI (i-butane) m/z (rel. int.): 361 (38.3 [C₂)H₂₄ O₆+H⁺]), 245 (100 [M-C₅H₈O₃+H⁺]); ¹H NMR in Table 2.

 $(1R^*,2R^*,5R^*,6R^*,7R^*,8R^*)$ -8-Angelyloxy-2-hydroxyguaia-3,10(14),11(13)-trien-6,12-olide (8). Gum; MS PCI (i-butane) m/z (rel. int.): 345 (41 $[C_{20}H_{24}O_5+H^+]$), 327 (100); ¹H NMR in Table 3.

(2R*,3R*,4R*,5S*,6S*,7R*,8R*)-8-Angelyloxy-3,4-epoxy-2-hydroxyguaia-1(10),11(13)-dien-6,12-olide (9). Gum; MS PCI (i-butane) m/z (rel. int.): 379 (100 [C₂₀H₂₆O₇+H⁺]), 361 (57.2), 342 (42.0); ¹H NMR in Table 2.

Mixture of $(1R^*,5R^*,6R^*,7R^*,8R^*,10S^*)$ -8-Epoxyangelyloxy-10-hydroxy-2-oxoguai-11(13)-en-6,12-olide (6f [3] and 1?,3S^*,4S^*,5S^*,6S^*,7R^*,8R^*,10?)-1,10-dihydroxy-8-epoxyangelyloxy-3,4-epoxy-2-oxoguai-11(13)en-6,12-olide (11). Gum; MS PCI (ibutane) m/z (rel. int.): 393 (100 [M+H+ of 11]), 377 (61.5 [M+H+ of 10]), 375 (63.8 [M+H+ of 11-H₂O]), 359 (83.8 [M+H+ of 10-H₂O]), 277 (37.6, M+H+ of 11-C₅H₈O₃), 261 (30.8 [M+H+ of 10-C₅H₈O₂]), 259 (25.6 [M+H+ of 11-C₅H₈O₃-H₂O]). ¹H NMR of 11 from mixt. in Table 3.

(3S*,6S*,7R*,8R*)-8-Angelyloxy-3-hydroxyger-macra-1(10),4,11(13)-dien-6,12-olide (12b). Gum which gradually decomposed on standing; MS PCI m/z (rel. int.): 347 (35.3, $[C_{20}H_{26}O_5+H^+]$), 329 (100 $[M+H^+-H_2O]$), H NMR in Table 3.

(3R*,6S,7R*,8R*)-3-Acetoxy-8-angelyloxyhelianga-1(10),4,11(13)-trien-6,12-olide (13). Gum, MS PCI (i-butane) m/z (rel. int.): 389 (12.7 [$C_{22}H_{28}O_6+H^+$]), 329 (45.0 [M+H+-HOAc]), 289 (17.8 [M+H+- $C_5H_8O_2$]), 229 (100, [M+H+-HOAc- $C_5H_8O_2$); ¹H NMR in Table 3.

Acknowledgement—Work in Tucumán was supported by a grant from Consejo de Investigaciones de la Universidad Nacional de Tucumán.

REFERENCES

 Cabrera, A. L., Flora de la Provincia de Jujuy, Part X. Compositae, Collection Científica del INTA, Vol. 13. INTA, Buenos Aires, 1978.

- Gil, R. R., Pastoriza, J. A., Oberti, J. C., Gutiérrez, A. B. and Herz, W., Phytochemistry, 1989, 28, 2841.
- 3. Gao, S., Wang, H. and Mabry, T. J., Journal of Natural Products, 1987, 50, 23.
- Bohlmann, F., Zdero, C., Jakupovic, J., Gerke, T., Wallmeyer, M., King, R. M. and Robinson, H., Liebigs Annalen, 1984, 162.
- 5. Gutiérrez, A. B. and Herz, W., *Phytochemistry*, 1988, **27**, 2225.
- 6. Herz, W. and Kulanthaivel, P., Phytochemistry, 1982, 21, 2475.
- 7. Jakupovic, J., Schuster, A., Chau-Thi, T. V.,

- Bohlmann, F. and Dominguez, X. A., Phytochemistry, 1988, 27, 2235.
- de Guitierrez, A. N., Sigstad, E. E., Catalán, C. A. N., Guitiérrez, A. B. and Herz, W., Phytochemistry, 1990, 29, 1219.
- Parodi, F. J. and Fischer, N. H., Phytochemistry, 1988, 27, 2987.
- Bohlmann, F., Mahanta, P. K., Suwita, A., Natu, A. A., Zdero, C., Dorner, W., Ehlers, D. and Grenz, M., Phytochemistry, 1977, 16, 1973.
- Bohlmann, F., Jakupovic, J., Schuster, A., King,
 R. M. and Robinson, H., *Phytochemistry*, 1982,
 21, 161.