PII: S0031-9422(97)00180-5

DITERPENOIDS FROM SALVIA SPLENDENS

Da-Peng Hu, Kazuyoshi Kawazoe and Yoshihisa Takaishi*

Faculty of Pharmaceutical Sciences, University of Tokushima, Shomachi 1-78, Tokushima, 770, Japan

(Received 2 January 1997)

Key Word Index—Salvia splendens; Labiatae; diterpene; clerodan; splenolide.

Abstract—The methanol extract of aerial parts of Salvia splendens afforded three new diterpenes: 15,16-epoxy- 1β -hydroxy-trans-cleroda-2,13(16),14-trieno-12,17; 19,18-diolide: 15,16-epoxy- 1β -acetoxy-trans-cleroda-2,13(16),14-trieno-12,17: 19,18-diolide and 1β ,11 β -diacetoxy-15-hydroxy-trans-cleroda-2,13-dieno-12,17; 15,16; 19,18-triolide named splenolide A, B and C. Their structures were established on the basis of spectroscopic studies. © 1997 Elsevier Science Ltd

INTRODUCTION

In the course of our search for bioactive metabolites from plants [1–5], we have been interested in the genus Salvia plants and started a study of the chemical components of Salvia splendens. Salvia species are widespread in tropical and temperate zones and a number have found local use as medicinal and culinary herbs. Salvia splendens is a Brazilian species which is now widely used for ornamental purpose. There are several reports [6–9] on the chemical investigation of S. splendens. In this paper, we report the isolation and the structure elucidation of three new diterpenoids, splenolide A (1), B (2) and C (3), and the known compounds 4 and 5.

RESULTS AND DISCUSSION

Repeated column chromatography of the ethyl acetate-soluble fraction from the methanol extracts of aerial parts of Salvia splendens yielded compounds 1-5. Splenolide A (1) was assigned the molecular formula C20H22O6 by HREI-mass spectrometry and its IR spectrum showed lactones (1765 and 1698 cm⁻¹) and hydroxy (3423 cm⁻¹) band absorptions. The ¹³C NMR spectrum exhibited 20 carbon resonances including one methyl, four methylenes, ten methines and five quaternary carbons. The ¹H and ¹³C NMR spectral data also showed the presence of one disubstituted double bond [$\delta_{\rm H}$ 5.60 (1H, dd, J=10.3, 1.5 Hz), 5.93 (1H, dd, J = 10.3, 1.5 Hz)], two lactones $[\delta_{\rm C} \ 173.2, \ 176.2]$, one furan ring $[\delta_{\rm H} \ 6.41, \ 7.40, \ 7.45]$ (each 1H, brs), δ_C 108.5 (d), 125.5 (s), 139.6 (d), 143.7 (d)], two methines attached to an oxygen function [$\delta_{\rm H}$ To confirm the structure of 1, we measured the 2D NMR spectrum. From the 1H - 1H COSY spectrum, the partial structures, I: > CH—CH(OH)—CH—CH—CH-CH<, II: —CH₂—CH₂—CH< and III: —O—CH—CH₂— were established. The proton signal at δ_H 2.03 (1H, d, J = 9.8 Hz, H-10) was correlated with the carbon signals at δ_C 24.1 (C-20), 35.9 (C-9), 42.6 (C-5), 65.3 (C-1) and 71.1 (C-19), the proton signal at δ_H 5.60 (H-3) with the carbon signals at δ_C 42.6 (C-5), 52.4 (C-4) and 65.3 (C-1) in the 13 C- 14 H long range correlation spectrum. These facts clearly indicated that the partial structure I could be put in

^{4.36 (1}H, d, J = 9.8 Hz), $\delta_{\rm C}$ 65.3; $\delta_{\rm H}$ 5.75 (1H, da', J = 12.2, 3.4 Hz), $\delta_{\rm C}$ 72.6] and one methylene attached to an oxygen function [$\delta_{\rm H}$ 4.20, 4.35 (each 1H, ABq, J = 9.1 Hz)]. The spectral data of 1 were very similar to those of salviarin (4) which was isolated from the same plant [6]. Comparison of the ¹³C NMR spectral data of compounds 1 and 4 showed almost the same chemical shifts except for C-1, 2 and 10. This fact suggested that in the structure of 1, the hydroxy methine replaced the methylene at C-1 found in 4.

^{1:} R1=OH, R2=H 2: R1=H, R2=O 4: R1=H, R2=R-R2=H

^{*} Author to whom correspondence should be addressed.

782 Short Reports

Table 1. ¹³C NMR spectral data for compounds 1-5

C	1	2	3	4	5
1	65.3	19.5	66.5	18.9	66.8
2	135.5	129.3	128.8	128.8	128.7
3	120.1	120.6	122.3	121.2	122.1
4	52.4	52.2	51.3	52.1	51.2
5	42.6	41.6	42.4	41.4	42.4
6	32.2	32.1	31.5	32.4	31.7
7	18.9	23.8	19.5	21.9	29.0
8	50.8	49.1	49.7	49.0	50.2
9	35.9	39.0	39.9	35.1	39.9
10	44.2	37.9	41.4	38.2	41.4
11	43.8	76.4	76.0	40.8	76.0
12	72.6	71.5	71.1	70.5	71.2
13	125.5	121.6	134.5	124.7	121.5
14	108.5	108.6	148.6	108.3	108.6
15	143.7	144.0	97.2	143.8	144.3
16	139.6	141.4	168.7	139.6	141.8
17	176.2	175.4	169.2	175.4	169.2
18	173.2	169.5	174.2	171.4	174.1
19	71.1	70.0	70.6	70.0	70.4
20	24.1	19.0	20.2	23.7	19.0
OAc	_	169.0	170.8		170.1
	_	20.7	19.2		21.8
			170.8		169.8
	_		21.8		19.9

ring-A and the hydroxy group was located on C-1. Other ¹H and ¹³C NMR signals were assigned in the same manner (Table 1). The relative stereochemistry of the hydroxy group on C-1 was determined to be β from the coupling constant (J = 9.8 Hz) of H-1 with H-10 (β -ax). Thus, the structure of splenolide A (1) was formulated as shown.

Splenolide B (2) contained a furan ring (δ_C 108.6, 121.6, 141.4, 144.0), a γ -lactone (δ_C 169.5), a δ -lactone ($\delta_{\rm C}$ 175.4), and a disubstituted double bond ($\delta_{\rm C}$ 120.6, 129.3) moieties like salviarin (4). Compound 2 also contained an acetyl ester moiety as evidenced by the proton signal at δ_H 1.99 (3H, s) and the carbon signals at δ_C 20.7 and 169.0. The FAB-HR-mass spectrum of 2 showed the peak due to $[M+H]^+$ at m/z 401.1611 which agreed with a molecular formula for 1 as $C_{22}H_{24}O_7$. The ¹H and ¹³C NMR spectral data of 2 were very similar to those of 4 except for the proton signals of H-11 [2: $\delta_{\rm H}$ 5.20 (d, J=10.7 Hz), 4: $\delta_{\rm H}$ 1.72 (dd, J = 15.0, 5.0 Hz), 2.24 (dd, J = 15.0, 12.0 Hz)and H-12 [2: $\delta_{\rm H}$ 5.28 (brd, J = 10.7 Hz), 4: $\delta_{\rm H}$ 5.36 (dd, J = 15.0, 12.0 Hz)] and acetyl methyl in compound 2, and the carbon signals of C-9, C-11 and C-13 (Table 1). From these facts, the structure of 2 was established as 11-acetoxysalviarin. The relative stereochemistry of the acetoxy group on C-11 was determined to be β from the NOESY spectrum. In the NOESY spectrum of 2, the proton signal at $\delta_{\rm H}$ 5.20 (H-11) was correlated with the proton signals at δ_H 0.98 (H₃-20) and 2.68 (H-8), the proton signal at $\delta_{\rm H}$ 5.28 (H-12) with the proton signal at $\delta_{\rm H}$ 2.21 (H-10). From these facts the structure of splenolide B was determined as shown (2).

Splenolide C (3), $C_{24}H_{26}O_{11}$ showed a carbonyl band at 1766, 1757 and 1735 cm⁻¹ and a hydroxy band at 3432 cm⁻¹. The ¹H NMR spectrum revealed the presence of one methyl [$\delta_{\rm H}$ 1.07 (s)], two acetyl methyls [$\delta_{\rm H}$ 2.03 and 2.20], one methylene attached to an oxygen function [δ_{H} 4.15, 4.35 (each 1H, ABq, J = 13.2Hz)] and seven methines from $\delta_{\rm H}$ 5.21 to 7.24. The ¹³C NMR spectrum of 3 exhibited 24 carbon resonances including five carbonyl ester carbon signals at $\delta_{\rm C}$ 168.7, 169.2, 170.8 × 2, 174.2, four double bond carbon signals at $\delta_{\rm C}$ 122.3, 128.8, 134.5 and 148.6. The ¹³C NMR spectral data of 3 was very similar to that of splendidin (5) except for a furan ring in compound 5. From the ¹H-¹H COSY and ¹³C-¹H COSY spectra, the partial structures, I: >CH—CH—CH—CH-CH<,II:>CH—CH₂—CH₂ and III: >CH—CH < were established. In the ¹³C-¹H long range correlation spectrum, the proton signal at $\delta_{\rm H}$ 2.87 (H-4) was correlated with the carbon signals at $\delta_{\rm C}$ 122.3 (C-3), 128.8 (C-2) and 174.2 (C-18), the proton signal at $\delta_{\rm H}$ 1.07 (H₃-20) with the carbon signals at $\delta_{\rm C}$ 39.9 (C-9), 41.4 (C-10), 49.7 (C-8) and 76.0 (C-11), the proton signal at $\delta_{\rm H}$ 2.80 (H-8) with the carbon signals at δ_C 41.4 (C-10) and 169.2 (C-17). From these correlations, the partial structures I, II and III could be put in rings -B and -C, respectively, and the assignments of ¹³C and ¹H NMR data were established as shown in Table 1 and experiments except for C-13, C-14, C-15 and C-16. Remaining signals in the NMR spectral data are the proton signal at $\delta_{\rm H}$ 6.11 (1H, br s) and 7.24 (1H, s) and carbon signals at $\delta_{\rm C}$ 97.2 (d), 134.5 (s), 148.6 (d) and 168.7 (s). In the ¹³C-¹H long range correlation spectrum, the proton signal at $\delta_{\rm H}$ 6.11 was correlated with the carbon signals at δ_C 134.5, and the proton signal at δ_H 7.24 with the carbon signals at $\delta_{\rm C}$ 97.2 and 168.7. From these results, the structure of the side chain in compound 3 could be one of two possible structures, IV: 13-ene-16-hydroxy-16, 15-olide or V: 13-ene-15-hydroxy-15, 16-olide. In the NOESY spectrum, the proton signal at $\delta_{\rm H}$ 6.11 was correlated with the proton signal at $\delta_{\rm H}$ 7.24. These facts clearly indicated that the structure of the side chain in compound 3 was partial structure V.

The relative stereochemistry was determined as shown below. In the NOESY spectrum, the methyl proton signal at $\delta_{\rm H}$ 1.07 (H₃-20) was correlated with the proton signals at $\delta_{\rm H}$ 5.51 (H-1), 4.35 (H-19), 2.80 (H-8) and 5.21 (H-11), the proton signals at $\delta_{\rm H}$ 5.61 (H-12) with the acetyl methyl proton signal at $\delta_{\rm H}$ 2.20 (C-11 OAc), the proton signal at $\delta_{\rm H}$ 2.45 with the acetyl methyl proton signal at $\delta_{\rm H}$ 2.03 (C-1 OAc). From these correlations, the C-1 acetoxy and C-11 acetoxy groups could be assigned to β , and the other relative stereochemistry also determined as shown. The coupling constants of H-1 ($J=9.3~{\rm Hz}$) and H-11 ($J=10.3~{\rm Hz}$) also supported the above conclusion.

Short Reports

Thus, the structure of splenolide C (3) was determined as shown.

Compounds 4 and 5 were identified from spectral data comparison to be salviarin [6] and splendidin [7]. In the course of our structure elucidation, we knew that the ¹³C NMR assignment of splendidin [7] is not correct. Thus, we confirmed the ¹³C NMR assignments of compound 5 by using 2D NMR spectra, results are shown in Table 1.

EXPERIMENTAL

¹H NMR: 270 and 400 MHz with TMS as int. stand; ¹³C NMR: 100.2 MHz; CC: silica gel 60 (Merck), Sephadex LH-20 (Pharmacia) and Toyopearl HW-40 (Tosho); HPLC GPC (H-2002, Shodex).

Plant material. Aerial parts of Salvia splendens were collected in January 1994 at Shiwahori-cho, Hiroshima prefecture, Japan.

Extraction and isolation. The dried aerial parts (7.13 kg) of Salvia splendens were extracted with MeOH (15×3) at 60° . The MeOH extracts were concd in vacuo to give a residue (300 g), which was partitioned between EtOAc and H₂O. The EtOAc layer was concd to give a residue (148 g), which was chromatographed on silica gel. The column was eluted with solvents of increasing polarity [hexane-EtOAc (3:1, 2:1, 1:1, 1:2), EtOAc, EtOAc-MeOH (19:1, 9:1), MeOH] to give 36 frs. Fr. 6 (3.3 g) was chromatographed on silica gel (CHCl₃-MeOH, 97:3) to give 13 frs (fr. 6.1-6.13). Fr. 6.5 (1.19 g) was chromatographed on Toyopearl HW-40 (CHCl₃-MeOH, 4:1), silica gel Et₂O-MeOH, 99:1) and crystallized from Et₂O to give 1 (17 mg). Fr. 5 (6.5 g) was chromatographed on silica gel $(CH_2Cl_2-Me_2CO, 19:1)$ to give 13 frs (fr. 5.1-5.13). Fr. 5.2 (202 mg) was chromatographed by using HPLC (GPC, CHCl₃) to give 3 (30 mg) and 5 (66 mg). Fr. 5.1 (1.41 g) was chromatographed on silica gel (CH₂Cl₂- Me_2CO , 24:1) to give 6 frs (fr. 5.1.1-5.1.6), fr. 5.1.1 (80 mg) and fr. 5.1.2 (200 mg) were chromatographed by using HPLC (GPC, CHCl₃) to give 4 (30 mg) and 2 (99 mg), respectively.

Splenolide A (1). Needles, mp 207-208°, $[\alpha]_D^{25}$ -135.3° (CHCl₃ c 0.77), IR $v_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3423, 1765, 1698, 1023, 877. H NMR (CDCl₃-CD₃OD, 1:1): δ 1.13 (3H, s), 1.35 (1H, dd, J = 14.2, 14.2 Hz, H-6), 1.79 (1H, br d, J = 14.2 Hz, H-6), 1.66 (1H, dd, $J = 13.7, 13.2 \text{ Hz}, \text{ H-11}, 1.93 (1H, dddd, } J = 14.2,$ 14.2, 4.4, 4.4 Hz, H-7), 2.03 (1H, d, J = 9.8 Hz, H-10), 2.44 (1H, br s, H-8), 2.45 (1H, br d, J = 14.2 Hz, H-7), 2.82 (1H, d, J = 1.5 Hz, H-4), 3.12 (1H, dd, J = 12.2, 2.4 Hz, H-11, 4.20, 4.35 (each 1H, ABq) $J = 9.1 \text{ Hz}, \text{H}_2\text{-}19), 4.36 (1\text{H}, d, J = 9.8 \text{ Hz}, \text{H}\text{-}1), 5.60$ (1H, dd, J = 10.3, 1.5 Hz, H-3), 5.75 (1H, dd, J = 12.2)3.4 Hz, H-12), 5.93 (1H, dd, J = 10.3, 1.5 Hz, H-2), 6.41 (1H, br s, H-14), 7.40 (1H, br s, H-15), 7.45 (1H, br s, H-16). 13C NMR (CDCl3-CD3OD, 1:1): Table 1. EI-MS m/z (rel. int.): 358 [M]⁺ (36), 340 (100), 253 (22), 230 (18), 202 (75), 143 (54), 94 (64), 91 (43). HR-MS m/z 358.1439 [M]⁺ C₂₀H₂₂O₆ required 358.1416.

Splenolide B (2). Needles, mp. $272-274^{\circ}$, $[\alpha]_D^{25}$ -135.5° (CHCl₃ c 1.09), IR $v_{\text{max}}^{\text{KBr}}$ cm⁻¹: 1752, 1231, 1046, 875. ¹H NMR (CDCl₃): δ 0.98 (3H, s, H₃-20), $1.34(1H, br t, J = 13.8, H\alpha-6), 1.89(1H, br d, J = 14.2)$ Hz, H β -6), 1.95 (1H, dddd, J = 12.2, 12.2, 4.4, 4.4 Hz, H-1), 1.99 (3H, s, OAc), 2.08 (1H, m, H-7), 2.21 (1H, dd, J = 12.2, 4.9 Hz, H-10), 2.45 (1H, ddd, J = 12.2, 4.9, 2.3 Hz, H-1), 2.59 (1H, ddd, J = 18.6, 4.9, 4.9 Hz,H-7), 2.68 (1H, br s, H-8), 2.80 (1H, br s, H-4), 4.21 $(2H, s, H_2-19), 5.20 (1H, d, J = 10.7 Hz, H-11), 5.28$ (1H, d, J = 10.7 Hz, H-12), 5.63 (1H, br d, J = 9.8Hz, H-3), 6.01 (1H, m, H-2), 6.40 (1H, d, J = 1.5 Hz, H-14), 7.40 (1H, d, J = 1.5 Hz, H-15), 7.45 (1H, s, H-16). ¹³C NMR (CDCl₃): Table 1. FAB-MS m/z (rel. int.): $401 [M + H]^+ (1)$, $340 [M - CH_3COOH]^+ (100)$, 322 (16), 278 (19), 216 (10), 203 (14), 189 (49), 176 (23), 133 (74), 129 (15), 105 (19), 91 (40), 81 (19), 43 (66). FAB-HR-MS m/z 401.1595 [M+H]⁺ C₂₂H₂₅O₇ required 401.1600.

Splenolide C (3). Amorphous powder, $[\alpha]_D^{2.5} - 145.2^{\circ}$ (CHCl₃ c 1.60), IR $v_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3432, 1766, 1376, 1242, 1043. ¹H NMR (CDCl₃): δ 1.07 (3H, s, H₃-20), 1.43 (1H, br t, J = 12.7 Hz, H-6), 1.86 (1H, br d, J = 14.7)Hz, H-6), 1.99 (1H, m, H-7), 2.03, (3H, s, C-1, OAc), 2.20 (3H, s, C-11, OAc), 2.45 (1H, d, J = 9.3 Hz, H-10), 2.47 (1H, m, H-7), 2.80 (1H, br s, H-8), 2.87 (1H, br s, H-4), 4.15, 4.35 (each 1H, ABq, J = 13.2 Hz, H₂-19), 5.21 (1H, d, J = 10.3, H-11), 5.51 (1H, br d, J = 9.3 Hz, H-1), 5.61 (1H, d, J = 10.3 Hz, H-12), 5.71 (1H, br d, J = 9.8 Hz, H-3), 5.89 (1H, br d, J = 9.8)Hz, H-2), 6.11 (1H, br s, H-15), 7.24 (1H, br s, H-14). 13 C NMR (CDCl₃): Table 1. EI-MS m/z (rel. int.): 490 $[M]^+$ (1), 430 $[M-CH_3COOH]^+$ (8), 388 (17), 370 (75) [M – CH₃COOH × 2]⁺ (18), 356 (16), 340 (9), 279 (8), 202 (20), 167 (12), 149 (27), 143 (23), 91 (24), 43 (100). HR-MS m/z 490.1509 [M]⁺ C₂₄H₂₆O₁₁ required 490.1475.

Acknowledgements—We thank Shiwahori Elemental School (Shiwahori-Cho, Hiroshima, Japan) for collection of plant material.

REFERENCES

- Takaishi, Y., Aihara, F., Tamai, S., Nakano, K. and Tomimatsu, T., *Phytochemistry*, 1992, 31, 3943.
- Takaishi, Y., Ohshima, S., Nakano, K., Tomimatsu, T., Tokuda, H., Nishino, H. and Iwashima, A., Journal of Natural Products, 1993, 56, 815.
- Takaishi, Y., Ujita, K., Tokuda, H., Nishino, H., Iwashima, A. and Fujita, T., Cancer Letters, 1992, 65, 19.
- Ujita, K., Takaishi, Y., Tokuda, H., Nishino, H., Iwashima, A. and Fujita, T., Cancer Letters, 1993, 68, 129.
- Hayashi, K., Hayashi, T., Ujita, K. and Takaishi, Y., Journal of Antimicrobial Chemotherapy, 1996, 37, 759.
- 6. Savona, G., Paternostro, M. P., Piozzi, F., Hanson,

- J. R., Hitchcock, P. B. and Thomas, S., Journal of the Chemical Society, Perkin Transactions I, 1978, 643
- 7. Savona, G., Paternostro, M. P., Piozzi, F. and Hanson, J. R., Journal of the Chemical Society, Perkin Transactions I, 1979, 533.
- 8. Kondo, T., Yoshikane, M., Yoshida, K. and Goto, T., Tetrahedron Letters, 1989, 30, 6729.
- 9. Thomas-Barberan, F., Harborne, J. B. and Self, R., *Phytochemistry*, 1989, 26, 2759.