

# BENZOPYRAN DERIVATIVES FROM WERNERIA NUBIGENA

SONIA PIACENTE, NORA HERRERA HERNANDEZ,\* FRANCESCO DE SIMONE, OLGA LOCK DE UGAZ† and COSIMO PIZZA‡

Facoltà di Farmacia, Università degli Studi di Salerno, Piazza Vittorio Emanuele 9, 84084 Penta di Fisciano, Salerno, Italy; \* Facultad de Farmacia y Bioquimica, Universidad Inca Garcilaso de la Yega Ay Bolivar 165, Lima 21 (Pueblo Libre), Puru; † Departamento de Quimica, Pontificia Universidad Catolica del Perù, Apartado 1761, Lima, Peru

(Received 29 January 1997)

**Key Word Index**—*Werneria nubigena*; Asteraceae; *p*-hydroxyacetophenone derivatives; benzopyrans; quinic acid derivatives; pyrrolizidine alkaloids.

Abstract—Investigation of the aerial parts of *Werneria nubigena* afforded, in addition to pyrrolizidine alkaloids, p-hydroxyacetophenone and quinic acid derivatives, the rare, 2,2-dimethyl-6-acetyl-8-(3'-hydroxy-3'-methyl-trans-but-1'-enyl)-chrom-3-ene, and the new, 2,2-dimethyl-6-acetyl-8-(3'-hydroxy-3'-methyl-trans-but-1'-enyl)-chroman-4-one. Structures were elucidated by spectroscopic methods. The chemotaxonomic implications are discussed briefly. © 1997 Elsevier Science Ltd

#### INTRODUCTION

As a part of a systematic phytochemical investigation of the genus Werneria, we have reported on the isolation of four ent-13-epi-manoyloxides from W. dactylophylla [1], as well as benzofurans, p-hydroxyacetophenones [2], ent-manoyloxide and ent-kaurane derivatives from W. ciliolata [3]. Roeder and coworkers reported on the isolation of the pyrrolizidine alkaloids (PAs), retrorsine, retrorsine-N-oxide, senecionine and integerrimine from W. nubigena [4], which is well known in South-American folk medicine for its anti-rheumatic, anti-hypertensive and digestive uses [5]. PAs have received considerable attention over the last 30 years, largely on account of their biological activities, which include hepatotoxic, mutagenic and anti-cancer properties [6, 7].

Since Roeder and co-workers directed their studies towards the isolation of PAs, continuing our studies on the *Werneria* species, we have undertaken a systematic investigation of *W. nubigena* to verify the occurrence of other classes of metabolites, in particular *p*-hydroxyacetophenone, benzopyran and benzofuran derivatives, which represent useful taxonomic markers at the tribal and generic level of the Asteraceae [2].

The present paper deals with the isolation of the new, 2,2-dimethyl-6-acetyl-8-(3'-hydroxy-3'-methyl-trans-but-1'-enyl)-chroman-4-one (1) and the rare, 2,2-dimethyl-6-acetyl-8-(3'-hydroxy-3'-methyl-trans-

but-1'-enyl)-chrom-3-ene (2), together with p-hydroxy-acetophenone (3), p-hydroxyacetophenone-O- $\beta$ -D-glucopyranoside (4), 3,5 di-O-caffeoylquinic acid (5), 3-O-caffeoylquinic acid (6), retrorsine-N-oxide (8) and rosmarinine-N-oxide (9).

## RESULTS AND DISCUSSION

The chloroform extract of W. nubigena yielded compounds 1 and 2 after sequential silica column chromatography and semi-prep. RP-HPLC. The molecular formula  $C_{18}H_{22}O_4$  of 1 was determined by  $^{13}C$  NMR and DEPT  $^{13}C$  NMR analysis, and by FAB-MS (negative ion mode), which gave a quasi-molecular anion [M-H]<sup>-</sup> at m/z 301. The  $^{13}C$  NMR of 1 exhibited 18 signals, which were divided by the analysis of DEPT  $^{13}C$  NMR into four sp<sup>2</sup> CH ( $\delta$  119.9, 127.1, 132.7 and 142.0), four quaternary sp<sup>2</sup> carbons ( $\delta$  120.7, 128.2, 130.7 and 161.5), of which the last one was hydroxylated, two C=O groups ( $\delta$  193.6 and 198.6), a CH<sub>2</sub> (49.0), two quaternary hydroxylated

<sup>‡</sup> Author to whom correspondence should be addressed.

Short Reports

carbons ( $\delta$  71.4 and 81.7) and five methyls ( $\delta$  26.2, 26.5 and 29.7, the last two ones, each for two carbons). In the <sup>1</sup>H NMR spectrum, in addition to two signals ascribable to methyls at oxygen-bearing carbons ( $\delta$  1.43, 6H, s and  $\delta$  1.54, 6H, s), two signals at  $\delta$  2.59 (3H, s) and 2.83 (2H, s) requiring, respectively, a methyl and a methylene group adjacent to carbonyl groups, were evident. Further features were two doublets ( $\delta$  6.61, 1H, J = 16 Hz and  $\delta$  6.94, 1H, J = 16 Hz), suggesting the occurrence of a *trans*-double bond and, in the aromatic region, two signals ( $\delta$  8.32, 1H,  $\delta$  2 Hz and  $\delta$  8.34, 1H,  $\delta$  2 Hz, ascribable to *meta*-coupled protons.

Analysis of the observed data were in good agreement with a 2,2-dimethylchroman-4-one substituted with an acetyl group and a five-membered side-chain, which was established as 3'-hydroxy-3'-methyl-trans-but-1'-enyl [8]. The positions of the acetyl group and the side-chain could be easily deduced taking as model, m-alchyl-p-hydroxyacetophenones [9]. HETCOR and COLOC experiments allowed the unambiguous assignment reported in Table 1, supporting the structure of 1 as 2,2-dimethyl-6-acetyl-8-(3'-hydroxy-3'-methyl-trans-but-1'-enyl)- chroman-4-one.

The NMR spectral pattern of 2 ( $C_{18}H_{22}O_3$ ) showed a close similarity to that of 1, the main differences being in the <sup>1</sup>H and <sup>13</sup>C NMR spectra were the absence of the signals for the carbonyl ( $\delta$  193.6) and methylene groups ( $\delta$  49.0 in the <sup>13</sup>C NMR spectrum and  $\delta$  2.83 in the <sup>1</sup>H NMR spectrum) of the chromanone skeleton, which were replaced by the signals at  $\delta$  5.83 (1H, d, J = 10 Hz) and 6.48 (1H, d, J = 10 Hz) in the <sup>1</sup>H NMR spectrum and at  $\delta$  132.3 and 122.7 in the <sup>13</sup>C NMR spectrum (Table 1), ascribable to the double

Table 1. NMR data of compounds 1 and 2 (CD<sub>3</sub>OD)\*

|    | 1            |                                                   | 2               |                                                    |
|----|--------------|---------------------------------------------------|-----------------|----------------------------------------------------|
|    | $\delta_{C}$ | $\delta_{ m H} \left( J_{ m HH} \ { m Hz}  ight)$ | $\delta_{ m C}$ | $\delta_{ m H} \left( J_{ m HH} \; { m Hz}  ight)$ |
| 2  | 81.7         |                                                   | 78.4            |                                                    |
| 3  | 49.0         | 2.83 s                                            | 132.3           | 5.83 d(10)                                         |
| 4  | 193.6        |                                                   | 122.7           | 6.48 d (10)                                        |
| 4a | 120.7        |                                                   | 119.0           |                                                    |
| 5  | 127.1        | 8.38 d(2)                                         | 126.7           | 8.00 d(2)                                          |
| 6  | 130.7        |                                                   | 130.9           |                                                    |
| 7  | 132.7        | 8.32 d(2)                                         | 127.9           | 7.61 d(2)                                          |
| 8  | 128.2        |                                                   | 128.0           |                                                    |
| 8a | 161.5        |                                                   | 159.6           |                                                    |
| 9  | 198.6        |                                                   | 197.5           |                                                    |
| 10 | 26.2         | 2.59 s                                            | 26.2            | 2.53 s                                             |
| 11 | 26.5         | 1.54 s                                            | 28.4            | 1.50 s                                             |
| 12 | 26.5         | 1.54 s                                            | 28.4            | 1.50 s                                             |
| 1′ | 119.9        | 6.94 d (16)                                       | 120.5           | 6.89 d (16)                                        |
| 2′ | 142.0        | 6.61 d (16)                                       | 140.4           | 6.54 d (16)                                        |
| 3′ | 71.4         | , ,                                               | 71.2            |                                                    |
| 4′ | 29.7         | 1.43 s                                            | 29.8            | 1.42 s                                             |
| 5′ | 29.7         | 1.43 s                                            | 29.8            | 1.42 s                                             |

<sup>\*</sup>Assignments confirmed by HETCOR and COLOC experiments.

bond of a chromene derivative [10]. Thus, **2** was established as 2,2-dimethyl-6-acetyl-8-(3'-hydroxy-3'-methyl-*trans*-but-1'-enyl)-chrom-3-ene, previously isolated from a *Stoebe* species and identified only on the basis of <sup>1</sup>H NMR data [11].

The isolation of 1 and 2 as natural products from W. nubigena, together with p-hydroxyphenone derivatives, is interesting from a chemotaxonomic and biogenetical point of view, because p-hydroxy acetophenones have been proposed as the precursors of benzofurans and benzopyrans, which occur widely in the Asteraceae [2]. Benzopyran derivatives are reported to possess bacteriostatic, antitumoral and insecticidal activity [12]. On the other hand, the occurrence of PAs which exhibit hepatotoxic and mutagenic properties [6, 7] strongly limits the use of W. nubigena as a home remedy for inflammatory and gastrointestinal deseases. The co-occurrence of acetophenones, benzopyrans and PAs, although not observed in W. dactylophylla and W. ciliolata, is typical of the Senecioneae, in particular, of the genus Senecio [13].

### **EXPERIMENTAL**

FABMS spectra, DEPT, HETCOR and COLOC experiments were performed as described earlier [14]. Plant material. Werneria nubigena was collected at

Yamobamba, Agallpampa, Otuzco Province, Departamento de la Libertad, Peru, at 2830 m above the sea level. A voucher sample is deposited at the Departamento de Quimica, Pontifica Universidad Catolica del Perù.

Extraction and isolation. Air-dried aerial parts (250 g) were defatted with petrol (40-70°) and successively extracted with CHCl<sub>3</sub> (14 g), CHCl<sub>3</sub>-MeOH (9:1) (8 g) and MeOH (21 g). A portion of the CHCl<sub>3</sub>-MeOH residue (2.5 g) was chromatographed on a Sephadex LH-20 column ( $80 \times 2$  cm). Frs (8 ml) were eluted with MeOH and checked by TLC on silica gel in CHCl<sub>3</sub>-MeOH-H<sub>2</sub>O (70:30:3) and n-BuOH-HOAc-H<sub>2</sub>O (12:3:5). Frs 23-37 (650 mg), containing a crude alkaloid mixt., were further purified by HPLC on a C-18 μ-Bondapak column using MeOH-H<sub>2</sub>O (3:7) (flow rate 2 ml min<sup>-1</sup>) to yield pure retrorsine (7) (50 mg,  $R_i$  50 min), retrorsine-N-oxide (8) (135 mg,  $R_i$  20 min) and rosmarinine-N-oxide (9) (33 mg,  $R_i$  30 min). Frs 38-41 (125 mg), submitted to RP-HPLC using MeOH- $H_2O$  (1:4) (flow rate 2 ml min<sup>-1</sup>), afforded phydroxyacetophenone-O-β-D-glucopyranoside (4) (29 mg). Frs 44–50 (305 mg), 60–62 (15 mg) and 68–72 (20 mg) were found to contain, respectively, pure phydroxyacetophenone (3), 3,5-dicaffeoylquinic acid (5) and 3-caffeoylquinic acid (6). A part of CHCl<sub>3</sub> extract (4.5 g), chromatographed on a silica gel column using CHCl<sub>3</sub> and increasing amounts of MeOH, gave together with frs containing 3 and 7-9 in a large amount, frs 81-96 (116 mg) which, when submitted to HPLC using MeOH- $H_2O(7:3)$  (flow rate 2 ml min<sup>-1</sup>) yielded pure 1 (33.6 mg,  $R_t$  14 min.) and 2 (7.2 mg,  $R_t$  Short Reports 797

22 min). The MeOH extract showed a TLC profile very similar to that of the CHCl<sub>3</sub>-MeOH extract.

Compound 1. Negative FABMS m/z: [M-H]<sup>-</sup> 301. <sup>1</sup>H and <sup>13</sup>C NMR: Table 1.

Compound 2. Negative FABMS m/z: [M-H]<sup>-</sup> 285. <sup>1</sup>H and <sup>13</sup>C NMR: Table 1.

Compounds 3–9. Identified by comparison of their spectral data with those reported in the lit. [2, 4, 7, 15, 16].

## REFERENCES

- De Tommasi, N., Aquino, R., de Simone, F., Piacente, S. and Pizza, C., *Phytochemistry*, 1992, 31, 1042.
- Piacente, S., Aquino, R., De Tommasi, N., Lock de Ugaz, O. and Haydeé Chavez, O., *Phyto-chemistry*, 1992, 31, 2182.
- Piacente, S., Aquino, R., De Tommasi, N., Pizza, C., Lock de Ugaz, O., Haydeé Chavez, O. and Mahmood, N., Phytochemistry, 1994, 36, 991.
- 4. Roeder, E., Bourauel, T. and Theisen, I., Natural Toxins, 1992, 1, 81.
- 5. Haydeé Chavez, O. and Lock de Ugaz, O., Revista de Química, 1993, 3, 31.
- 6. Mattock, A. R., Chemistry and Toxicology of Pyr-

- rolizidine Alkaloids. Academic Press, London, 1986.
- 7. Rizk, A. F. M., Natural Occurring Pyrrolizidine alkaloids. CRC Press, Boca Raton, 1991.
- Waterman, P. G. and Mahmoud, E. N., Phytochemistry, 1985, 24, 571.
- Breitmaier, E. and Voelter, W., Carbon-13 NMR Spectroscopy, 3rd edn. VCH, Weinheim, 1989.
- Paßreiter, C. M., Willuhn, G., Steigel, A. and Matthiesen, U., Phytochemistry, 1992, 31, 1070.
- Bohlmann, F. and Suwita, A., Phytochemistry, 1978, 17, 1929.
- Proksch, P. and Rodriguez, E., *Phytochemistry*, 1983, 22, 2335.
- Urones, J. G., De Pascual, J. T., Marcos, I. S., Fernandez Moro, R., Basabe Barcala, P. and Sexmero Cuadrado, M. J., *Phytochemistry*, 1987, 26, 1113
- De Tommasi, N., De Simone, F., Piacente, S., Pizza, C. and Mahammod, N., Natural Products Letters, 1995, 6, 261.
- Were, O., Benn, M. and Munavu, R. M., Phytochemistry, 1993, 32, 1595.
- Mahmood, N., Moore, P. S., De Tommasi, N., De Simone, F., Colman, S., Hay, A. J. and Pizza, C., Antiviral Chemistry and Chemotherapy, 1993, 4, 235.