PII: S0031-9422(97)00378-6

RING C-SECO LIMONOIDS FROM MELIA TOOSENDAN

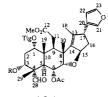
JIAN-BO ZHOU, YUJI MINAMI, FUMIO YAGI, KENJIRO TADERA and MUNEHIRO NAKATANI*†

Department of Biochemical Science and Technology, Faculty of Agriculture, Kagoshima University, Korimoto, Kagoshima 890, Japan; † Department of Chemistry, Faculty of Science, Kagoshima University, Korimoto, Kagoshima 890, Japan

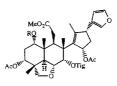
(Received in revised form 26 March 1997)

Key Word Index—*Melia toosendan*; Meliaceae; antifeedants; 3-*O*-acetylohchinolal; ohchinolide C; nimbolidin F; salannin; acetyltrichilenone; 20,21,22,23-tetrahydro-23-oxotrichilenone; azadirone.

Abstract—Three different types of ring C-seco limonoids, 3-O-acetylohchinolal, ohchinolide C and nimbolidin F, were isolated as insect antifeedants from *Melia toosendan* along with three known limonoids, salannin, azadirone and acetyltrichilenone, and a known protolimonoid, 20, 21, 22, 23-tetrahydro-23-oxotrichilenone. Their structures were elucidated by spectroscopic studies and their antifeedant properties were examined with the larvae of *Spodoptera eridania*. © 1997 Elsevier Science Ltd


INTRODUCTION

In our continuous study of limonoids from M. toosendan [1], we isolated three new ring C-seco limonoids, 3-O-acetylohchinolal (1), ohchinolide C (2) and nimbolidin F (3), along with one C-seco limonoid, salannin (4) [2], two intact apo-euphol limonoids, azadirone (5) [3] and acetyltrichilenone (6) [4], and a protolimonoid, butanolide (7) [5], from the root bark. Compound 1 is the second limonoid of this type [6] and one of the biogenetic precursors to the ring-C seco-limonoids having C-6/C-28 and C-7/C-15 ether linkages, such as in salannin, and ohchinin (11) [6]. C-Seco limonoids are major ring-seco limonoids in M. azedarach, M. azadirachta and M. toosendan in the family Meliaceae and found only in these related species. The butanolide (7) was first isolated from Melia species. Insect antifeedant activity of the isolated compounds was tested against the larvae of the voracious pest insect Spodoptera eridania (Boisduval).


RESULTS AND DISCUSSION

An oily mixture, soluble in 50% hexane-diethyl ether, obtained from the ether extract of air-dried root

3-O-Acetylohchinolal (1), $C_{36}H_{46}O_{11}$, FAB-mass spectrum m/z: 655 [M+1]⁺, $[\alpha]_D + 62^\circ$ (c 0.14, MeOH), exhibited the presence of formyl (2957 and 1710 cm⁻¹), ester (1740 cm⁻¹) and conjugated ester (1710 cm⁻¹) groups in the IR spectrum. The ¹³C NMR and ¹H NMR (at 27 and 45°) spectra indicated that 1

2: R=COCH(CH₃)₂ 9: R=Ac

3: R=COCH(CH₃)CH₂CH₃ 10: R=Tig

bark was fractionated using silica flash chromatography and preparative TLC. HPLC purification of the limonoid fractions gave compounds 1–3 along with four known tetranortriterpenoids (4–7), as well as six limonoids reported previously [1].

[†] Author to whom correspondence should be addressed.

contained nine CH₃ (one methoxy), three CH₂, thirteen CH (one formyl and four olefinic) and eleven carbons (four ester carbonyl and four olefinic) not bonded to hydrogen. Limonoids possessing a formyl group have been rarely observed in nature and the NMR data of 1 suggested that the structure was similar to that of ohchinolal (8) [6], isolated from the fruits of *M. azedarach* from Japan.

The ¹H NMR spectrum of 1 was superimposable on that of 8 except for an addition of one acetyl group and some differences in the chemical shifts. Different chemical shifts of the 1-H and 9-H signals at δ 4.79 and 2.94 in 1 from δ 5.07 and 2.84 in 8 strongly suggested the tigloyloxy group to be substituted at C-3, but the fact that 1 has a 1α -tigloyloxy and 3α -acetoxy structure was elucidated by a NOE obser-

vation between 9-H and the 3'-Me signal of the tiglate. Other NOEs between the 5-H and 28-formyl proton signals, the 9-H and 15-H signals and the 8-Me and 6-H and 7-H signals showed the stereochemistry of 1 to be the same as that of 8.

Compound **2**, $C_{37}H_{48}O_{10}$, $[\alpha]_D - 23^\circ$ (c 0.11, MeOH), named ohchinolide C, showed the presence of ester (1740 cm⁻¹) and conjugated ester (1710 cm⁻¹) groups and olefinic double bonds (1640 and 1620 cm⁻¹) in the IR spectrum. The ¹H NMR data indicated that **2** contained each one of acetyl, 2-methylpropanoyl, tigloyl and olefinic methyl groups along with a furan moiety. The ¹H NMR and ¹³C NMR spectra of **2** were superimposable on those of ohchinolide B (**9**) isolated from *M. azedarach* from Japan [7] and the former Yugoslavia [8] except that one acetyl group in **9** was

Table 1. ¹H NMR data for compounds 1, 2 and 3 (400 MHz, CDCl₃)

Н	1	2	3
1	4.79 t (2.6)	4.83 t (2.8)	4.56 dd (2.6, 2.0)
2α	2.11 dt (16.5, 2.6)	2.22 dt (17.6, 2.8)	2.26 m
β	2.27 dt (16.5, 2.6)	2.27 dt (17.6, 2.8)	2.27 m
3	4.82 t (2.6)	4.97 t (2.8)	4.94 dd (3.5, 2.0)
5	3.71 d (12.5)	2.71 d (12.6)	2.75 d (12.6)
6	5.26 dd (12.5, 2.6)	4.08 dd (12.6, 2.8)	4.13 dd (12.6, 3.0)
7	4.04 d(2.6)	5.71 d (2.8)	5.56 d (3.0)
9	2.94 dd (7.1, 4.3)	3.17 dd (12.3, 4.5)	3.54 t (6.3)
11α	2.24 dd (15.4, 4.3)	2.67 dd (18.6, 4.5)	2.20-2.30
β	2.29 dd (15.4, 7.1)	2.77 dd (18.6, 12.3)	2.20-2.30
15	5.54 t (br) (6.6)	5.50 d(7.2)	$5.73 \ d \ (br) \ (6.8)$
16α	2.27 dd (br) (12.3, 6.6)	2.36 ddd (15.0, 9.5, 7.2)	2.38 ddd (14.9, 8.8, 6.8)
β	2.09 ddd (12.3, 8.8, 6.6)	1.97 d (15.0)	1.57 d (14.9)
17	3.65 d (br) (8.8)	3.43 d (9.5)	3.44 d (br) (8.8)
18(Me)	1.66 d (1.3)	1.80 s (br)	1.95 s (br)
19(Me)	1.10 s	1.07 s	1.14 s
21	7.27 m	7.26 m	7.18 m
22	$6.31 \ s \ (br)$	6.31 dd (br) (1.1, 0.7)	$6.19 \ d \ (br) \ (0.8)$
23	$7.34 \ t \ (br) \ (1.5)$	$7.31 \ t \ (br) \ (1.4)$	7.23 m
28a	9.64 s	$3.48 \ d(br)(7.4)$	$3.30 \ d \ (br) \ (7.2)$
β		3.55 d(7.4)	3.49 d(7.2)
29(Me)	1.09 s	1.20 s	1.21 s
30(Me)	1.41 s	1.45 s	1.25 s
CO ₂ Me	3.28 s	****	3.55 s
1-Ac		1.92 s	
3-Ac	1.97 s		2.13 s
6-Ac	1.84 s	_	
15-Ac		_	1.99 s
15-140			2000 0
2-Methylpropan	oyl and 2-Methylbutanoyl		
2'		2.51 hept (7.1)	2.15 m
2'-Me		1.21 d(7.1), 1.24 d(7.1)	1.24 d (6.6)
3'		_	$1.45 \ m, \ 1.88 \ m$
3'-Me		_	0.95 t (7.3)
Tig			
2'-Me	1.97 s (br)	$1.93\ t\ (br)\ (1.1)$	$1.79 \ s \ (br)$
3'	$6.99 \ qq \ (7.3, 1.5)$	7.05 qq (7.1, 1.4)	6.78 dq (7.0, 1.3)
3'-Me	1.83 dq (7.3, 1.0)	1.84 dq (7.0, 1.1)	$1.68 \ d \ (br) \ (7.0)$

changed to a 2-methylpropanoyl group. The presence of a 2-methylpropanoyl group at C-3 α of **2** was demonstrated by NOEs between the 2-methylpropanoyl dimethyl signals at δ 1.21 and 1.24 and the 5-H and 28 α -H signals at δ 2.71 and 3.48. The S-configuration at C-15 was also elucidated from a NOE enhancement of the 7 β -H signal at δ 5.71 by irradiation of the olefinic 13-Me signal at δ 1.80.

The structure of nimbolidin F (3), $C_{41}H_{56}O_{12}$, $[\alpha]_D+4^\circ$ (c 0.09, MeOH), was elucidated from the IR (1736, 1710, 1640 and 1620 cm⁻¹) and ¹H NMR data. Their spectra were similar to those of nimbolidins from the same plant [3], especially to that of nimbolidin D (10) except for the change of the 1α -tigloyloxy group in 10 to a 2-methylbutanoyl group in 3, accompanying a high field shift of the 1β -H signal at δ 4.76 in 10 to δ 4.56 and a low field shift of the 12-CO₂Me signal at δ 3.50 in 10 to δ 3.55.

The insect antifeedant activity of the isolated compounds 1–7, were tested against the larvae of *S. eridania* (Boisduval) by a conventional leaf disk method [9]. Nimbolidin F (3) showed the activity at 500 ppm, corresponding to the concentration 10 μ g ml⁻¹, and acetylohchinolal (1), ohchinolide C (2) and salannin (4) were active at 1000 ppm. On the other hand, intact apo-euphol limonoid, 5 and 6, and the protolimonoid 7 were not active at 1000 ppm.

EXPERIMENTAL

¹H and ¹³C NMR: with 400 and 100 MHz in CDCl₃, (Tables 1 and 2). [α]_D, CD and UV: in MeOH. IR: with KBr.

Plant material. The root bark was collected in December 1992 at Xiangtan, China. The plant material was identified by Dr Wen Xue and a voucher specimen is deposited in the herbarium at Department of Biology, Normal University of Xiangta, P.R. China.

Extraction and isolation. The air-dried root bark (1.5 kg) was defatted with hexane (20 l.) and then extracted with Et₂O (20 l.) to yield 12.8 g of an ether extract, which was dissolved in 50 ml of Et₂O and then added to the same vol. of hexane to give 9.1 g of a soluble part. It was flash chromatographed on silica gel with a hexane–Et₂O solvent system. Each of the limonoid frs eluted with Et₂O was purified by prep. TLC using C_6H_6 –MeOH (3:1) to give three limonoid frs. Each fr was further sepd and purified through HPLC using μ -Bondapac C_{18} with 20–45% H_2 O–MeOH as the solvent to give 1 (6.7 mg), 2 (1.1 mg), 3 (0.9 mg), 4 (4.2 mg), 5 (5.0 mg), 6 (18.0 mg) and 7 (2.0 mg).

3-O-acetylohchinolal (1). An amorphous powder, $C_{36}H_{46}O_{11}$: FAB-MS m/z: 655 [M+H]⁺, $[\alpha]_D + 62^\circ$ (c 0.14); UV λ_{max} nm (ϵ): 222.5 (9800), 275 (1400); IR ν_{max} cm⁻¹: 2957, 1740, 1710, 1638 and 1618; CD: $\Delta \epsilon_{213} + 17.6$, $\Delta \epsilon_{220} + 15.3$.

Ohchinolide C (2). An amorphous powder, $C_{37}H_{48}O_{10}$: HRFAB-MS m/z: 653.3347 $[M+1]^+$

Table 2. ¹³C NMR data for compounds 1 and 2 (100 MHz, CDCl₃)

C 1 2 1 70.8 d 71.5 d 2 30.5 t 27.8 t 3 75.1 d 71.8 d 4 47.1 s 42.4 s 5 39.5 d 40.6 d 6 69.1 d 70.8 d 7 85.3 d 73.9 d 8 47.5 s 45.0 s 9 35.9 d 37.3 d 10 41.9 s 40.8 s 11 25.0 t 32.7 t 12 172.5 s 171.2 s 13 135.7 s 138.6 s 14 146.1 s 146.8 s 15 87.6 s 85.4 d 16 41.2 t 37.6 t 17 49.6 d 47.0 d 18 17.0 q 16.0 q 19 16.7 q 15.5 q 20 126.9 s 126.5 s 21 143.0 d 139.2 d 22 110.6 d 110.0 d 23 138.9 d 143.5 d 28 204.3 d 78.0 t		CDC ₁₃)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	С	1	2
3 75.1 d 71.8 d 4 47.1 s 42.4 s 5 39.5 d 40.6 d 6 69.1 d 70.8 d 7 85.3 d 73.9 d 8 47.5 s 45.0 s 9 35.9 d 37.3 d 10 41.9 s 40.8 s 11 25.0 t 32.7 t 12 172.5 s 171.2 s 13 135.7 s 138.6 s 14 146.1 s 146.8 s 15 87.6 s 85.4 d 16 41.2 t 37.6 t 17 49.6 d 47.0 d 18 17.0 q 16.0 q 19 16.7 q 15.5 q 20 126.9 s 126.5 s 21 143.0 d 139.2 d 22 110.6 d 110.0 d 23 138.9 d 143.5 d 28 204.3 d 78.0 t 29 14.4 q 18.9 q 30 13.0 q 20.5 q Ac 170.1 s 170.3 s		70.8 d	71.5 d
4 47.1 s 42.4 s 5 39.5 d 40.6 d 6 69.1 d 70.8 d 7 85.3 d 73.9 d 8 47.5 s 45.0 s 9 35.9 d 37.3 d 10 41.9 s 40.8 s 11 25.0 t 32.7 t 12 172.5 s 171.2 s 13 135.7 s 138.6 s 14 146.1 s 146.8 s 15 87.6 s 85.4 d 16 41.2 t 37.6 t 17 49.6 d 47.0 d 18 17.0 q 16.0 q 19 16.7 q 15.5 q 20 126.9 s 126.5 s 21 143.0 d 139.2 d 22 110.6 d 110.0 d 23 138.9 d 143.5 d 28 204.3 d 78.0 t 29 14.4 q 18.9 q 30 13.0 q 20.5 q Ac 170.1 s 170.3 s 169.1 s — 20.9 q 20.8 q 20.5 q — CO ₂ Me 12.0 q 12.2 q 3' 137.7 d 137.6 d 3'-Me 14.1 q 14.4 q 2-methylpropanoyl 1' — 174.8 s 2' — 34.7 d 2'-Me — 19.5 q		30.5 t	27.8 t
5 39.5 d 40.6 d 6 69.1 d 70.8 d 7 85.3 d 73.9 d 8 47.5 s 45.0 s 9 35.9 d 37.3 d 10 41.9 s 40.8 s 11 25.0 t 32.7 t 12 172.5 s 171.2 s 13 135.7 s 138.6 s 14 146.1 s 146.8 s 15 87.6 s 85.4 d 16 41.2 t 37.6 t 17 49.6 d 47.0 d 18 17.0 q 16.0 q 19 16.7 q 15.5 q 20 126.9 s 126.5 s 21 143.0 d 139.2 d 110.6 d 110.0 d 23 138.9 d 143.5 d 28 204.3 d 78.0 t 29 14.4 q 18.9 q 30 13.0 q 20.5 q Ac 170.1 s 170.3 s 169.1 s — 20.9 q 20.8 q 20.5 q — CO ₂ Me 51.6 q — Tig 1' 166.6 s 165.2 s 2' 128.9 s 129.0 s 2'-Me 12.0 q 12.2 q 3' 137.7 d 137.6 d 3'-Me 14.1 q 14.4 q 2-methylpropanoyl 1' — 174.8 s 2' — 34.7 d 2'-Me — 19.5 q		75.1 d	71.8 d
6 69.1 d 70.8 d 73.9 d 85.3 d 73.9 d 8 47.5 s 45.0 s 9 35.9 d 37.3 d 10 41.9 s 40.8 s 11 25.0 t 32.7 t 12 172.5 s 171.2 s 13 135.7 s 138.6 s 14 146.1 s 146.8 s 15 87.6 s 85.4 d 16 41.2 t 37.6 t 17 49.6 d 47.0 d 18 17.0 q 16.0 q 19 16.7 q 15.5 q 20 126.9 s 126.5 s 21 143.0 d 139.2 d 122 110.6 d 110.0 d 23 138.9 d 143.5 d 28 204.3 d 78.0 t 29 14.4 q 18.9 q 30 13.0 q 20.5 q Ac 170.1 s 170.3 s 169.1 s 20.9 q 20.8 q 20.5 q 7 CO ₂ Me 12.0 q 12.2 q 3' 137.7 d 137.6 d 14.1 q 14.4 q 2-methylpropanoyl 1' — 174.8 s 2' — 34.7 d 2'-Me — 19.5 q		47.1 s	42.4 s
7 85.3 d 73.9 d 8 47.5 s 45.0 s 9 35.9 d 37.3 d 10 41.9 s 40.8 s 11 25.0 t 32.7 t 12 172.5 s 171.2 s 13 135.7 s 138.6 s 14 146.1 s 146.8 s 15 87.6 s 85.4 d 16 41.2 t 37.6 t 17 49.6 d 47.0 d 18 17.0 q 16.0 q 19 16.7 q 15.5 q 20 126.9 s 126.5 s 21 143.0 d 139.2 d 22 110.6 d 110.0 d 23 138.9 d 143.5 d 28 204.3 d 78.0 t 29 14.4 q 18.9 q 30 13.0 q 20.5 q Ac 170.1 s 170.3 s 169.1 s — 20.9 q 20.8 q 20.5 q — CO ₂ Me 51.6 q — Tig 1' 166.6 s 165.2 s 2' 128.9 s 129.0 s 2'-Me 12.0 q 12.2 q 3' 137.7 d 137.6 d 3'-Me 14.1 q 14.4 q 2-methylpropanoyl 1' — 174.8 s 2' — 34.7 d 2'-Me — 19.5 q		39.5 d	40.6 d
8 47.5 s 45.0 s 9 35.9 d 37.3 d 10 41.9 s 40.8 s 11 25.0 t 32.7 t 112 172.5 s 171.2 s 13 135.7 s 138.6 s 14 146.1 s 146.8 s 15 87.6 s 85.4 d 16 41.2 t 37.6 t 17 49.6 d 47.0 d 18 17.0 q 16.0 q 19 16.7 q 15.5 q 20 126.9 s 126.5 s 21 143.0 d 139.2 d 120 d 120 d 139.2 d 120 d 139.2 d 138.9 d 143.5 d 28 204.3 d 78.0 t 14.4 q 18.9 q 30 13.0 q 20.5 q 20.9 q 20.8 q 20.5 q 20.9 q 20.8 q 20.5 q 20.9 d 20.8 q 20.5 d 20.9 d 20.8 d d 20.9 d 20.9 d 20.8 d 20.9 d 20.9 d 20.9 d 20.8 d 20.9 d		69.1 d	70.8 d
9 35.9 d 37.3 d 10 41.9 s 40.8 s 11 25.0 t 32.7 t 112 172.5 s 171.2 s 13 135.7 s 138.6 s 14 146.1 s 146.8 s 15 87.6 s 85.4 d 16 41.2 t 37.6 t 17 49.6 d 47.0 d 18 17.0 q 16.0 q 19 16.7 q 15.5 q 20 126.9 s 126.5 s 21 143.0 d 139.2 d 122 110.6 d 110.0 d 139.2 d 123 138.9 d 143.5 d 28 204.3 d 78.0 t 14.4 q 18.9 q 30 13.0 q 20.5 q 20.5 q 20.9 q 20.8 q 20.5 q 20.5 q 20.5 q 20.5 q 20.5 q 20.6 20.5 q 20.6 20.5 q 20.6 20.5 q 20.7 d 20.8 q 20.5 q 20.8 q 20.8 q 20.5 q 20.8 q 20.5 q 20.8 q 20.5 q 20.8 q 20.5 q 20.8 q 20		85.3 d	73.9 d
10			45.0 s
11			
12 $172.5 s$ $171.2 s$ 13 $135.7 s$ $138.6 s$ 14 $146.1 s$ $146.8 s$ 15 $87.6 s$ $85.4 d$ 16 $41.2 t$ $37.6 t$ 17 $49.6 d$ $47.0 d$ 18 $17.0 q$ $16.0 q$ 19 $16.7 q$ $15.5 q$ 20 $126.9 s$ $126.5 s$ 21 $143.0 d$ $139.2 d$ 22 $110.6 d$ $110.0 d$ 23 $138.9 d$ $143.5 d$ 28 $204.3 d$ $78.0 t$ 29 $14.4 q$ $18.9 q$ 30 $13.0 q$ $20.5 q$ Ac $170.1 s$ $170.3 s$ $169.1 s$ — $20.9 q$ $20.8 q$			
13			
14			
15 87.6 s 85.4 d 16 41.2 t 37.6 t 17 49.6 d 47.0 d 18 17.0 q 16.0 q 19 16.7 q 15.5 q 20 126.9 s 126.5 s 21 143.0 d 139.2 d 22 110.6 d 110.0 d 23 138.9 d 143.5 d 28 204.3 d 78.0 t 29 14.4 q 18.9 q 30 13.0 q 20.5 q Ac 170.1 s 170.3 s 169.1 s — 20.9 q 20.8 q 20.5 q — CO ₂ Me 51.6 q — Tig 1' 166.6 s 165.2 s 2' 128.9 s 129.0 s 2'-Me 12.0 q 12.2 q 3' 137.7 d 137.6 d 3'-Me 14.1 q 14.4 q 2-methylpropanoyl 1' — 174.8 s 2' — 34.7 d 2'-Me — 19.5 q			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		•	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		-	•
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
Ac $170.1 s$ $170.3 s$ $169.1 s$ $ 20.9 q$ $20.8 q$ $20.5 q$ $ 20.5 q$ $ 20.5 q$ $ 20.5 q$ $ 20.5 q$ $ 20.5 q$ $ 20.5 q$ $ 20.5 q$ $ 20.5 q$ $ 20.5 q$ $ 20.5 q$ $20.5 q$ 20		•	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ac		170.3 s
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			20.0
CO2Me $51.6 q$ — Tig 1' $166.6 s$ $165.2 s$ 2' $128.9 s$ $129.0 s$ 2'-Me $12.0 q$ $12.2 q$ 3' $137.7 d$ $137.6 d$ 3'-Me $14.1 q$ $14.4 q$ 2-methylpropanoyl 1' — 1' — $174.8 s$ 2' — $34.7 d$ 2'-Me — $19.5 q$			20.8 q
Tig 1' 166.6 s 165.2 s 2' 128.9 s 129.0 s 2'-Me 12.0 q 12.2 q 3' 137.7 d 137.6 d 3'-Me 14.1 q 14.4 q 2-methylpropanoyl 1' — 174.8 s 2' — 34.7 d 2'-Me — 19.5 q	CO Ma	•	
1' 166.6 s 165.2 s 2' 128.9 s 129.0 s 2'-Me 12.0 q 12.2 q 3' 137.7 d 137.6 d 3'-Me 14.1 q 14.4 q 2-methylpropanoyl 1' — 174.8 s 2' — 34.7 d 2'-Me — 19.5 q	CO ₂ Me	31.0 q	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Tig		
2'-Me 12.0 q 12.2 q 3' 137.7 d 137.6 d 3'-Me 14.1 q 14.4 q 2-methylpropanoyl 1' — 174.8 s 2' — 34.7 d 2'-Me — 19.5 q	1'	166.6 s	165.2 s
3' 137.7 d 137.6 d 3'-Me 14.1 q 14.4 q 2-methylpropanoyl 1' — 174.8 s 2' — 34.7 d 2'-Me — 19.5 q	2'	128.9 s	$129.0 \ s$
$3'$ -Me $14.1 \ q$ $14.4 \ q$ 2 -methylpropanoyl $1'$ — $174.8 \ s$ $2'$ — $34.7 \ d$ $2'$ -Me — $19.5 \ q$	2'-Me	$12.0 \; q$	12.2 <i>q</i>
2-methylpropanoyl 1' — 174.8 s 2' — 34.7 d 2'-Me — 19.5 q	3′		137.6 d
1' — 174.8 s 2' — 34.7 d 2'-Me — 19.5 q	3′-Me	14.1 q	14.4 q
2' — 34.7 <i>d</i> 2'-Me — 19.5 <i>q</i>	2-methylpropanoyl		
2'-Me — 19.5 q		_	174.8 s
	2′	_	34.7 d
3' — 19.5 q	2'-Me		
	3′		19.5 q

 $(\Delta + 2.1 \text{ mmu}); [\alpha]_D - 23^{\circ} (c \ 0.11); \text{ UV } \lambda_{\text{max}} \text{ nm } (\varepsilon): 208.6 \ (11600); \text{ IR } v_{\text{max}} \text{ cm}^{-1}: 1740, 1710, 1640 \text{ and } 1620.$

Nimbolidin *F* (3). An amorphous powder, C₄₁H₅₆O₁₂: CI-MS m/z: 741 [M+H]⁺; [α]_D+4° (c 0.09); UV λ_{max} nm (ϵ): 216 (11 800); IR ν_{max} cm⁻¹: 1736, 1710, 1640 and 1620.

Antifeedant activity. The antifeedant potential of the isolated compounds was tested by a conventional leaf disc method using Chinese cabbage (*Brassica campestris* L. var *chinensis*) [9] against the third-instar larvae of *S. eridania*. From the choice test at 300, 400,

500 and 1000 ppm, the minimum inhibitory concn of each limonoid was determined: nimbolidin F (3): 500 ppm; acetylohchinolal (1), ohchinolide C (2) and salannin (4): 1000 ppm; azadiron (5), acetyltrichilenone (6) and the butanolide (7): not active.

Acknowledgements—We would like to thank Mr K. Takezaki (Kagoshima Prefectural Agricultural Experiment Station) for the supply of insects. We are also grateful to Dr H. Naoki (Suntory Institute for Bioorganic Research) and Mr N. Nakayama (Nippon Roche Research Centre), respectively, for CI-MS and FAB-MS measurements.

REFERENCES

Zhou, J-Bo, Okamura, H., Iwagawa, T., Nakamura, Y., Nakayama, N., Tadera, K. and Naka-

- tani, M., Heterocycles, 1995, 41, 2795 and references therein.
- 2. Henderson, R., McCrindle, R., Melera, A. and Overton, K. H., *Tetrahedron*, 1968, **24**, 1525.
- 3. Lavie, D., Levy, E. C. and Jain, M. K., *Tetrahedron*, 1971, 27, 3927.
- 4. Chan, W. R., Gibbs, J. A. and Taylor, R. D., Chemical Communications, 1967, 720.
- Gunning, P. J., Jeffs, L. B., Isman, M. B. and Towers, G. H. N., *Phytochemistry*, 1994, 36, 1245.
- Fukuyama, Y., Miura, I. and Ochi, M., Bulletin of the Chemical Society of Japan, 1983, 56, 1139.
- Ochi, M., Kotsuki, H., Ido, M., Nakai, H., Shiro, M. and Tokoroyama, T., Chemistry Letters, 1979, 1137
- 8. Kraus, W. and Bokel, M., Chemische Berichte, 1981, 114, 267.
- 9. Wada, K. and Munakata, K., Journal of Agriculture and Food Chemistry, 1968, 16, 471.