#### PII:S0031-9422(97)00435-4

## SESQUITERPENE LACTONES FROM CARPESIUM DIVARICATUM

DAE KEUN KIM, KANG RO LEE\* and OK PYO ZEE

Natural Products Laboratory, College of Pharmacy, Sung Kyun Kwan University, Suwon 440-746, Korea

(Received 3 March 1997)

Key Word Index—Carpesium divaricatum; Compositae; sesquiterpene lactones; germacranolides.

**Abstract**—The aerial parts of *Carpesium divaricatum* afforded two known and two new germacranolides,  $2\beta$ ,5-epoxy-5,10-dihydroxy-6 $\alpha$ -angeloyloxy-9 $\beta$ -isobutyloxy-germacran-8 $\alpha$ ,12-olide and 2 $\alpha$ ,5-epoxy-5,10-dihydroxy-6 $\alpha$ -angeloyloxy-9 $\beta$ -isobutyloxy-germacran-8 $\alpha$ ,12-olide. © 1997 Elsevier Science Ltd

#### INTRODUCTION

Carpesium divaricatum is a plant which is widely distributed in South Korea, and it has long been used as a Korean traditional medicinal herb for its antipyretic, insectifuge, pain-relief and anti-inflammatory properties [1]. A literature survey revealed that few phytochemical studies had been carried out on the genus Carpesium; several sesquiterpene lactones, granilin [2], carpesiolin, carabrone [3], carabrol, ivaxillin [4], ineupatrolide A, B [5] and divaricin A, B, C [6] were reported.

In the course of our systematic phytochemical investigation of Korean genus *Carpesium*, four sesquiterpene lactones were isolated from the methanol extract of *Carpesium divaricatum*. This paper reports the isolation and structural elucidation of two known (1 and 3) and two new (2 and 4) sesquiterpene lactones.

# RESULTS AND DISCUSSION

Repeated column chromatography of the methanol extract yielded four sesquiterpene lactones. The structures of stereoisomers 1 [7, 8] and 3 [6] were established by comparison of their mps, UV, IR and NMR spectral data with those reported in the literature.

Compound **2** was assigned the molecular formula  $C_{24}H_{34}O_9$  (m/z, 466.2191) by EI- and HR-mass spectrometry. Its IR spectrum revealed the presence of an  $\alpha$ -methylene- $\gamma$ -lactone moiety (1770 cm<sup>-1</sup>) and hydroxyl groups (3550 cm<sup>-1</sup>) [9]. The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra (Table 1) were very similar to those of **1** except for the presence of the signals of an isobutyl group. Isobutyric acid appeared at the  $\delta$  177.0, 33.9 g and 19.0 in the <sup>13</sup>C NMR spectrum. 2D NMR <sup>1</sup>H-<sup>1</sup>H

COSY) and DEPT experiments confirmed the isobutyl group as well as the angelate group. The position of the two groups was confirmed by an HMBC experiment;  ${}^{1}\text{H}^{-13}\text{C}$  long-range correlation between C-9 proton signal ( $\delta$  5.15, d, J = 5.1 Hz) and C-1′ carbon signals ( $\delta$  177.0) of isobutyl group, and the correlation between C-6 proton signal ( $\delta$  5.08, d, J = 7.5 Hz) and the C-1″ carbon signal ( $\delta$  165.9) of angelate group were observed (Fig. 1). The stereochemistry of **2** was shown to be identical to that of **1** on the basis of the completely similar coupling constants observed in the  ${}^{1}\text{H}$  NMR spectrum. Consequently, compound **2** was characterized as  $2\beta$ ,5-epoxy-5,10-dihydroxy-6 $\alpha$ -angeloyloxy-9 $\beta$ -isobutyloxy-germacran-8 $\alpha$ ,12-olide.

The molecular formula of 4 was assigned  $C_{24}H_{34}O_9$  (m/z, 466.2195) by EI- and HR-mass spectrometry. Its IR spectrum showed the presence of an  $\alpha$ -methylene- $\gamma$ -lactone moiety (1770 cm<sup>-1</sup>) and hydroxyl groups (3460 cm<sup>-1</sup>) [8]. Except for the presence of the signals of the isobutyl group ( $\delta$  176.4 34.1, 19.0 and 18.9 in the <sup>13</sup>C NMR spectrum), the patterns of <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra (Table 1) were very similar to 3. By

<sup>\*</sup> Author to whom correspondence should be addressed.

Table 1. <sup>1</sup>H NMR and <sup>13</sup>C NMR chemical shifts of Compound 2 and 4 (CDCl<sub>3</sub>, <sup>1</sup>H: 500 MHz, <sup>13</sup>C: 125 MHz)

| 123.4112) |                       |                 |                     |                 |
|-----------|-----------------------|-----------------|---------------------|-----------------|
|           | 2                     |                 | 4                   |                 |
|           | ¹H                    | <sup>13</sup> C | <sup>1</sup> H      | <sup>13</sup> C |
| la        | obsc.*                | 47.9            | 1.84 m              | 44.0            |
| 1b        | obsc.                 |                 | 1.74 m              |                 |
| 2         | 4.35 m                | 71.9            | 4.71 m              | 74.0            |
| 3a        | 2.58 m                | 40.8            | 2.03 m              | 37.5            |
| 3b        | obsc.                 |                 | 1.76 m              |                 |
| 4         | 2.34 m                | 44.8            | 2.56 m              | 36.7            |
| 5         |                       | 106.0           |                     | 106.2           |
| 6         | 5.08 d(7.5)           | 74.0            | 5.26 d(10.9)        | 75.7            |
| 7         | 3.89 m                | 45.6            | 3.11 m              | 45.1            |
| 8         | 4.73 dd (6.5, 5.1)    | 77.2            | 5.26 dd (10.0, 1.4) | 77.4            |
| 9         | 5.15 d(5.1)           | 80.3            | 4.62 d(10.0)        | 77.9            |
| 10        |                       | 73.1            |                     | 72.2            |
| 11        |                       | 134.1           |                     | 133.2           |
| 12        |                       | 169.3           |                     | 168.3           |
| 13a       | 6.21 d(3.1)           | 125.6           | 6.33 d(1.6)         | 127.2           |
| 13b       | 5.57 d(3.1)           |                 | 5.66 d(1.6)         |                 |
| 14        | 1.38 s                | 25.4            | 1.26 s              | 30.8            |
| 15        | 1.02 d(6.5)           | 13.2            | 1.16 d(6.5)         | 14.5            |
| 1'        |                       | 177.0           |                     | 176.4           |
| 2'        | 2.69 sep              | 33.9            | 2.68 sep            | 34.1            |
| 3′        | 1.22 d(7.0)           | 19.0            | 1.24 d(7.1)         | 19.0            |
| 4'        | 1.22 d(7.0)           | 19.0            | 1.21 d(7.1)         | 18.9            |
| 1"        |                       | 165.9           |                     | 166.6           |
| 2"        |                       | 126.7           |                     | 126.4           |
| 3"        | 6.19 q(7.0)           | 141.2           | 6.14 q(7.0)         | 141.5           |
| 4"        | $1.99 \ \hat{d}(7.0)$ | 15.9            | $1.97 \hat{d}(7.0)$ | 15.9            |
| 5"        | 1.93 s                | 20.4            | 1.92 s              | 20.4            |

<sup>\*</sup> Obscured.

Values in parentheses are coupling constants in Hz.

2D NMR ( ${}^{1}\text{H-}{}^{1}\text{H COSY}$ ), DEPT and HMBC experiments the positions of the isobutyl and angelate groups were confirmed;  ${}^{1}\text{H-}{}^{13}\text{C}$  long-range correlation between C-9 proton signal ( $\delta$  4.62, d, J = 10.0 Hz) and C-1' carbon signals ( $\delta$  176.4) of isobutyl group, and the correlation between C-6 proton signal ( $\delta$  5.26, d, J = 10.9 Hz) and the C-1' carbon signal ( $\delta$  166.6) of angelate group were observed in the HMBC spectrum. The stereochemistry of **4** was also deter-

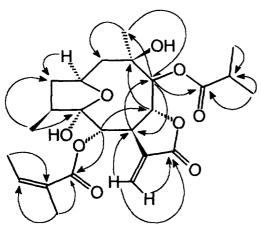



Fig. 1. HMBC correlations of 2

mined to be identical to that of 3 on the basis of the very similar coupling constants observed in the  $^{1}H$  NMR spectrum. Thus, the structure of 4 was established as  $2\alpha$ ,5-epoxy-5,10-dihydroxy- $6\alpha$ -angeloyloxy- $9\beta$ -isobutyloxy-germacran- $8\alpha$ ,12-olide.

# EXPERIMENTAL

General. Mps: uncorr. NMR: 500, 400 MHz ( $^{1}$ H) and 125 MHz ( $^{13}$ C). EI-MS: 70 eV; IR: Nujol. CC: silica gel (SDS: 40–63  $\mu$ m). LPLC: Merck Lichroprep silica 60 (240 × 10 mm), Merck Lichroprep RP-18 (240 × 10 mm).

Plant material. Carpesium divaricatum was collected in August 1994 on the Samyeongsan, Kangwondo, Korea. A voucher specimen is deposited in the herbarium of College of Pharmacy, Sung Kyun Kwan University (SKKU-94-005).

Extraction and isolation. The air-dried plant material (3.5 kg) was finely ground and extracted at room temp, with MeOH. The resultant MeOH extract (110 g) followed by the successive solvent partition to give CH<sub>2</sub>Cl<sub>2</sub> (30 g), *n*-BuOH (22 g) and H<sub>2</sub>O (50 g) soluble frs.

The CH<sub>2</sub>Cl<sub>2</sub> soluble fr. was chromatographed over

silica gel using a gradient solvent system of hexane–EtOAc(5:1  $\rightarrow$  0:1) as eluent to give five sub-frs, whose fourth one was chromatographed on silica gel eluting with CHCl<sub>3</sub>–EtOAc(15:1), followed by hexane–CH<sub>2</sub>Cl<sub>2</sub>–EtOAc(1:1:1) to give five frs. Fr. 2 was rechromatographed on LPLC (MeOH–H<sub>2</sub>O, 3:2) to yield 20 mg 1, and fr. 4 and 5 afforded 15 mg 2, 10 mg 3 and 15 mg 4 by LPLC (CH<sub>2</sub>Cl<sub>2</sub>–EtOAc, 3:1).

 $2\beta$ ,5-Epoxy-5,10-dihydroxy-6 $\alpha$ -angeloyloxy-9-isobutyloxy-germacran-8 $\alpha$ ,12-olide (2). Needles; mp 180–182°; [ $\alpha$ ] $_{\rm D}^{24}$  –41.6° (MeOH, c 1.1); EI-MS m/z 466.2191 calcd for C $_{24}$ H $_{34}$ O $_{9}$  466.2022; IR  $v_{\rm max}^{\rm Nujol}$  cm $^{-1}$ : 3550, 3380, 1770, 1690, 1650;  $^{1}$ H and  $^{13}$ C NMR: Table 1.

 $2\alpha,5$ -Epoxy-5,10-dihydroxy-6 $\alpha$ -angeloyloxy-9-isobutyloxy-germacran-8 $\alpha$ ,12-olide (4). Needles; mp 174–177°; [ $\alpha$ ]<sub>D</sub><sup>24</sup> –5.2° (MeOH, c 1.2); EI-MS m/z 466.2195 calcd for C<sub>24</sub>H<sub>34</sub>O<sub>9</sub> 466.2202; IR  $\nu_{\rm max}^{\rm Nujol}$  cm<sup>-1</sup>: 3460, 1770, 1720, 1650; <sup>1</sup>H and <sup>13</sup>C NMR: Table 1.

Acknowledgements—This work was supported by the research grant from Korea Science and Engineering Foundation (KOSEF: 93-0400-07). We wish to thank

Dr Jong Hwan Kwak, Korea Institute of Science and Technology, for the plant collection.

#### REFERENCES

- 1. Yook, C. S., *Medicinal Plants of Korea*. Jinmyeong Publishing Co., Seoul, 1981, p. 392.
- 2. Maruyama, M. and Shibata F., Phytochemistry, 1975, 14, 2247.
- 3. Maruyama, M. and Omura, S., *Phytochemistry*, 1977, **16**, 782.
- Maruyama, M., Karube, A. and Sato, K., Phytochemistry, 1983, 22, 2773.
- Maruyama, M., Watanabe, K., Kawakami, T., Maeda, M., Kato, M., Nozoe, S. and Ohio, T., *Planta*, 1955, 61, 388.
- 6. Maruyama, M., Phytochemistry, 1990, 29, 547.
- 7. Baruah, N. C., Baruah, R. N., Sharma, R. P. and Baruah, J. N., *Journal of Organic Chemistry*, 1982, 47, 137.
- 8. Gosswami, A. C., Baruah, R.N., Sharma, R. P., Baruah, J. N., Kulanthaivel, P. and Herz, W., *Phytochemistry*, 1984, 23, 367.
- Todorova, M. N. and Krasteva, M. L., *Phyto-chemistry*, 1996, **42**, 1231.