

PII: S0031-9422(97)00477-9

VERNONIOSIDES AND AN ANDROSTANE GLYCOSIDE FROM VERNONIA KOTSCHYANA

ROKIA SANOGO, MARIA PAOLA GERMANO, NUNZIATINA DE TOMMASI*†, COSIMO PIZZA† and RITA AQUINO‡

Dipartimento Farmaco-Biologico, Facoltà di Farmacia, Università di Messina, Messina, Italy; †Centro Interdipartimentale di Chimica, Biologia e Tecnologia Farmaceutiche, Università degli Studi di Salerno, Piazza V. Emanuele 9, 84084 Penta di Fisciano, Salerno, Italy; †Dipartimento di Chimica delle Sostanze Naturali, Università Federico II di Napoli via D. Montesano 49, 80131 Naples, Italy

(Received in revised form 24 March 1997)

Key Word Index—*Vernonia kostchyana*; Asteraceae; steroidal glycosides; 3β ,24 β -trihydroxy-21,23:22,28:26,28-triepoxy-5 α -stigmasta-8(9),14(15)-dien-3-O- β -D-glucopyranoside; 3β ,24 β -trihydroxy-21,23:22,28:26,28-triepoxy-5 α -stigmasta-8(9),14(15)-dien-3-O- β -D-xylopyranosyl-(1 \rightarrow 3)- β -D-glucopyranoside; 3β ,24 β -trihydroxy-21,23:22,28:26,28-triepoxy-5 α -stigmasta-8(9),14(15)-dien-3-O- β -D-glucopyranosyl-(1 \rightarrow 2)- β -D-glucopyranoside; 3β ,24 β ,26,28 α -tetra-hydroxy-22,28-epoxy-5 α -stigmasta-8(9),14(15)-dien-21,23-lactone-3-O- β -D-glucopyranosyl-(1 \rightarrow 3)- β -D-glucopyranoside; androst-8-en-glycoside.

Abstract—Five new stigmastane-type steroidal glycosides, vernoniosides D_1 , D_2 , D_3 , P_1 , and P_2 and a new androst-8-en glycoside have been isolated from the root of *Vernonia kotschyana*. The aglycones of the first five compounds possess a common 3β -hydroxy- $\Delta^{8,14}$ steroidal nucleus and different side-chains; the glycosidic moieties are made up of one or two monosaccharides (glucose, xylose). Their structures have been elucidated using a combination of 1D and 2D NMR techniques as 3β ,24 β -trihydroxy-21,23:22,28:26,28-triepoxy-5 α -stigmasta-8(9),14(15)-dien-3-O- β -D-glucopyranoside; 3β ,24 β -trihydroxy-21,23:22,28:26,28-triepoxy-5 α -stigmasta-8(9),14(15)-dien-3-O- β -D-glucopyranosyl-(1 \rightarrow 3)- β -D-glucopyranoside; 3β ,24 β ,26,28 α -tetrahydroxy-22,28-epoxy-5 α -stigmasta-8(9),14(15)-dien-21,23-lactone-3-O- β -D-glucopyranosyl-(1 \rightarrow 3)- β -D-glucopyranoside. © 1997 Published by Elsevier Science Ltd

INTRODUCTION

In the course of a search for bioactive principles from African medicinal plants [1-4], we have examined Vernonia kotschyana Sch. Bip., a plant used in African folk medicine as a herbal remedy against digestive insufficiency, colitis, dermatosis, tuberculosis and headache. In Mali folk medicine the powdered root of this plant, known by the popular name 'Buayé', is a remedy in the treatment of gastritis and gastroduodenal ulcers. Clinical trials conducted in Mali have corroborated these uses [5]. Pharmacological study of the extracts of the drug showed a gastroprotective effect of the n-butanol soluble part of the aqueous extract in different types of experimentally induced gastric ulcers in rats [5]. No phytochemical study has been carried out on this species. The genus

This report deals with the isolation and structural elucidation of five new stigmastane-type glycosides having a $\Delta^{8(9),14(15)}$ -steroid cycle system and one (glucose) or two (glucose and xylose, or two glucose units) sugar units linked at C-3 of the aglycone (1–5) from the methanol extract of V. kotschyana. A new androst-8-en glycoside (6) was also isolated from the same extract.

RESULTS AND DISCUSSION

Sephadex LH-20 column chromatography followed by DCCC and reversed-phase HPLC of the *n*-butanol fraction from the methanol extract of *V. kotschyana* gave compounds 1–6. Compounds 1–5 displayed the

Vernonia is known to contain a number of stigmastane-type glycosides, namely vernoniosides [6–9], possessing a common $\Delta^{7,9(11)}$ -steroidal nucleus, different oxygenated side chains at C-17 and a sugar moiety linked at C-3 of the aglycones made up of glucose.

^{*} Author to whom correspondence should be addressed.

1 Vernionioside D₁ R=H R₁=H

2 Vernionioside D_2 R=H R_1 = β -D-xylopyranosyl

3 Vernionioside D_3 R= β -D-glucopyranosyl R_1 =H

4 Vernionioside F_1 $R_1=H$

5 Vernionioside F_2 $R_1=\beta$ -D-xylopyranosyl

HOOH
OH
$$R_1O$$
OH
 $R_1=\beta$ -D-glucopyranosyl

molecular formulae $C_{35}H_{52}O_{11}$, $C_{40}H_{60}O_{15}$, $C_{41}H_{62}O_{16}$, $C_{35}H_{52}O_{12}$, and $C_{40}H_{60}O_{16}$, respectively, as deduced by FAB mass spectrometry and ¹³C NMR including DEPT analysis. The FAB mass spectra (negative ion) also showed the loss of a hexose (162 mass units) for compounds 1 and 4, two hexoses for compound 3, a

hexose and a pentose (132 mass units) for compounds **2** and **5** from the respective quasi-molecular anions $[(M-H)^- m/z 647, 779, 809, 663 and 795 for 1-5].$

The ¹H NMR spectra for the aglycone part of 1–3 were typical of a sterol structure displaying the angular methyl singlets at δ 1.06 and 0.92 and a charac-

teristic multiplet at δ 3.77 (H-3) that had correlation with a secondary alcoholic carbon (CH-3) at δ 79.22 in the 1H-13C HETCOR spectra, although shifted downfield relative to the unglycosylated model [10-11]. The H-3 signal was the starting point which allowed the identification of a first spin system comprising all protons of rings A and B (from H-1 to H-7) through the COSY spectra (Table 1). Also the ¹³C NMR spectra for the aglycone moieties of 1-3 showed the presence of 29 carbons, 19 of them were assignable to the steroidal nucleus including a glycosylated oxymethine (C-3, δ 79.22) and four sp⁽²⁾ carbons assignable to a tetrasubstituted double bond at δ 141.33 and 124.43 (each quaternary carbon) and a trisubstituted double bond at δ 151.33 (C) and at 116.62 (CH). The signal at δ 116.62 (C-15) was correlated to a proton signal at δ 5.35 (1H, br m, H-15) in the HETCOR spectra. COSY experiments delineated a second spin system which comprised H-15, H_2 -16 (δ 2.22 and 2.49), H-17 (δ 2.05), and extended to the side chain protons H-20 (δ 2.30) and H-21 (δ 5.29) (Table 1) leading to the location of the trisubstituted double bond between C-14 and C-15. The tetrasubstituted double bond located between C-8 and C-9 was supported by the observation of the long-range couplings of C-9 with H-7, C-8 with H-11ax and C-8 with H-15 in the HMBC spectrum of the major compound 1 and by comparison with the data reported for a $\Delta^{8.14}$ -vernonioside reported previously which was produced by acid hydrolysis of vernonioside B₁ in V. amvgdalina [6]. Combined analysis of the COSY and HETCOR spectra allowed the assignments (as reported in Table

Table 1. 1 H and 13 C NMR data for aglycones of compounds 1 and 4 and 13 C NMR data for aglycone of compound 6* (500 MHz in CD₃OD); (J_{H-H} in Hz)

Position	Compounds							
		1†	-	4†	6			
	δ_{C}	$\delta_{ ext{H}}$	$\delta_{ m C}$	$\delta_{ extsf{H}}$	$\delta_{ m C}$			
1	35.42	1.10α	35.50	1.08α	35.80			
		1.45β		1.44β				
2	30.79	1.60α	30.80	1.58∝	31.90			
		1.95β		1.94β				
3	79.22	3.77 m	80.00	3.79 m	80.05			
4	36.70	2.00α	36.50	2.01α	35.80			
		1.51β		1.52β				
5	42.30	1.30α	42.30	1.32α	42.50			
6	22.75	1.46 br m	23.00	1.46 br m	23.20			
7	36.39	2.10	37.00	2.10	36.80			
		1.60		1,60				
8	124.43		124.91		124.60			
9	142.33		142.53		133.90			
10	38.00		38.00		38.43			
11	27.00	2.08	26.90	2.08	27.84			
12	26.64	1.39	26.70	1.38	37.40			
		1.96		1.93				
13	45,97	~	46.00		39.25			
14	151.33	- -	151.60	5.45	50.00			
15	116.62	5.35 br m	117,00	2.44	20.13			
16	38.00	2.49 dd, J = 11.0; 3.0	38.00	2.88	37.33			
		2.22 dd, J = 11.0; 5.0						
17	50.60	2.05	50.10	2.05	23.20			
18	16.72	0.92 s	16.80	$0.90 \ s$	18.51			
19	18.80	1.06 s	18.50	1.05 s	19.40			
20	53.84	2.30 br m	48.00	2.45 dd, J = 11.0, 4.9	_			
21	105.61	5.29 dJ = 6.0	175.80		_			
22	85.32	4.75 dd, J = 2.7; 3.5	79.00	4.51 dd, J = 3.6, 4.5				
23	86.26	4.40 d, J = 2.7	86.31	4.44 d, J = 3.6	_			
24	88.40		83.10					
25	41.74	2.18 br m	36.00	2.01 br m				
26	73.50	$4.00 \ dd \ J = 9.0, 7.0$	67.80	$3.51 \ dd \ J = 11.5, 6.6$				
20	13.30	3.67 dd, J = 9.0, 6.0	07.00	3.35 dd J = 11.5, 4.9				
27	11.00	$1.01 \ dJ = 6.0$	13.00	1.05 dJ = 7.0				
28	118.00		107.00	1.07				
29	21.81	1.33 s	25.20	1.39				

^{*} Assignments were confined by COSY, HETCOR, HMQC.

[†] Values of the ¹H and ¹³C NMR resonances for compounds 2 and 3 are almost superimposable to those of compound 1; values of the resonances of compound 5 are almost superimposable to those of compound 4.

1) of the remaining protons and carbons of the agly-cone moieties of 1–3, including a $C_{10}H_{15}O_5$ side-chain, and demonstrated that this side-chain was the same as that of vernonioside D, previously isolated from V. amygdalina [3].

An extensive use of 1D and 2D NMR techniques indicated the presence of a common steroidal nucleus and a different side-chain in compounds 4 and 5. A combination of COSY and HETCOR experiments delineated three main connectivities: the first one comprised C-23-C-22-C-20-C-17-C-16-C-15, the second was C-25-C-26 and the third was C-25-C-27. NMR data from COSY and HETCOR of C-20 (${}^{1}H$ δ 2.45, 13 C δ 48.0), C-22 (1 H δ 4.51, 13 C δ 79.0), and C-23 (1 H δ 4.44, ^{13}C δ 86.31) demonstrated that they were one angular methine adjacent to a carbonyl group and two oxymethine, respectively. A signal at δ 175.80, in the ¹³C NMR spectra, was assigned to a γ-lactone cyclized between C-21 and C-23 by comparison with the data reported for VE-2 isolated from V. extensa [7] and vernonioside B_1 isolated from V. amygdalina. [8]. The hemiketal nature of C-28 was indicated by a signal at δ 107.0 and the tertiary alcoholic nature of C-24 was suggested by the resonance at δ 83.10 (quaternary carbon). In accordance with this structure, the ¹H NMR signal of Me-29 appeared as a singlet at δ 1.39, indicating a Me linked to a carbon bearing a hydroxyl group while of Me-27 appeared as a doublet at δ 1.05. The presence of a (Me)CH₂OH-CH- group at C-24 instead of the usual terminal isopropyl group of vernoniosides, was shown by the chemical shifts of C-25 (δ 36.00), Me-27 (δ 13.00) and C-26 (δ 67.80), the last one correlated by HETCOR to proton signals at δ 3.51 and 3.35 (each, dd, J = 6.6and 11.5 Hz, and 4.9 and 11.5 Hz, respectively) typical of a CH₂OH-CH functionality [9]. The relative stereochemistry at the asymmetric carbons of the side-chain of compounds 4 and 5 was established by NOEDS experiments. By irradiation at δ 2.45 (H-20) NOEs were observed for H-22, Me-18 and Me-19; by irradiation at δ 4.51 (H-22), NOEs were observed for both H-20 and H-23 (δ 4.44). No NOEs were observed between H-23 and H-26 or H-27 as well as between H-20 and H-17.

Compound 6 has molecular formula $C_{31}H_{50}O_{11}$ as indicated by FAB mass spectral and NMR data. The ¹³C NMR spectrum showed the presence of 19 carbon signals for the aglycone moiety ascribable to an androstane nucleus [10] including an oxymethine (δ 80.05, CH, C-3). The ¹H NMR spectrum of 6 showed the presence of two angular Me singlets at δ 0.75 and 1.06 [11–13], and the H-3 proton signal at δ 3.80 which was shifted downfield by glycosylation. The sole unsaturated functionality evident from the ¹³C NMR spectrum was one tetrasubstituted double bond (δ 124.67 and 133.92, each quaternary carbon) which lies between C-8 and C-9 as indicated by their chemical shifts according to Δ^8 -steroidal models [14]. All the remaining carbon signals of the molecule were assigned by comparison with steroidal models and according to the substitution effect rules [10, 14] to a 3- β -hydroxy-5 α -14 α -androst-8-en aglycone. Compound 6 possessed a steroidal cyclic system similar to that of compounds 1–5, the differences between the sterols were in the absence of the side-chain and of the trisubstituted double bond in 6. It may be a natural product from a common pathway or a degradation product formed during the extraction and isolation procedure.

The nature and the ratio of the sugars in compounds 1-6 were established by acid methanolysis and GLC analysis of the persylilated methylsugars. The NMR data for the sugar moieties (Table 2) linked at C-3 of the aglycones in compounds 1 and 4 revealed the presence of an unsubstituted β -D-glucopyranosyl unit by comparison with literature data [3]. Compounds 2 and 5 possessed the same disaccharide chain consisting of a glucopyranose and a xylopyranose. On the basis of NMR evidence, it was determined to be β -Dxylopyranosyl- $(1 \rightarrow 3)$ - β -D-glucopyranoside. Their β linkages were shown by the coupling constant values (7.5 Hz) of two anomeric proton signals at δ 4.57 an 4.49 and by their chemical shifts in the ¹³C NMR spectra. COSY, HOHAHA and HETCOR experiments allowed the assignments of all proton and carbon signals and the identification of a terminal β -D-xylopyranose [10, 15] linked at C-3 (δ 83.51) of an inner β -D-glucopyranose (Table 2). In fact the expected glycosylation shifts were observed for C-3 (β -effect) by +6.4 ppm and C-2 (γ -effect) by -0.7 ppm of glucose in compounds 2 and 5 in comparison with the corresponding carbons of terminal sugar model (compounds 1 and 4). Similarly, the results of COSY. HOHAHA and HETCOR experiments and the chemical shifts upon glycosylation showed that the disaccharide chain was made by a terminal β -D-glucopyranose linked at an inner β-D-glucopyranose through C-2 (δ 81.70) in compound 3 and through C-3 (δ 84.96) in compound 6. Thus the structure of the disaccharide chain was β -D-glucopyranosyl- $(1 \rightarrow 2)$ - β -D-glucopyranoside in 3 and β -D-glucopyranosyl-(1 \rightarrow 3)- β -D-glucopyranoside in 6 (Fig 1). The trivial names vernoniosides D₁, D₂ and D₃ were proposed for compounds 1-3 as well as vernoniosides F and F_1 were proposed for 4 and 5, respectively.

EXPERIMENTAL

General. NMR measurements were determined in CD₃OD solns. COSY, HOHAHA, $^{1}H^{-13}C$ HETCOR and HMBC experiments were obtained as described previously [4, 16, 17]. Overhauser enhancement effects were evaluated with the NOEDS techniques on samples previously degassed by bubbling Ar in the soln. Optical rotations were measured using a sodium lamp operating at 589 nm in 1% solns in MeOH. FABMS were recorded in glycerol matrix in the negative ion mode. HPLC sepns were achieved using μ -Bondapack C-18 columns and RI detector.

Plant material. The plant V. kotschyana was col-

Table 2. 1 H and 13 C NMR data for sugar moiety of compounds 2 and 3 and 13 C NMR data of compound 1 and 6* (500 MHz in CD₃OD); (J_{H-H} in Hz)

	Compounds									
	1*		2*	3		6				
Position	$\delta_{ m C}$	$\delta_{ m C}$	δ_{H}	δ _H	$\delta_{ m C}$	$\delta_{ m C}$				
Glc-1	102.12	101.50	4.57 d, J = 7.5	4.57 d, J = 7.5	102.50	102.53				
2	74.80	73.50	3.22 dd, J = 7.5; 9.0	3.22 dd, J = 7.5; 9.0	81.70	73.80				
3	78.18	83.51	3.45 t, J = 9.0	3.43 t, J = 9.0	76.40	84.96				
4	71.00	71.56	3.36 t, J = 9.0	3.36 t, J = 9.0	71.20	72.00				
5	78.50	77.90	3.47 m	3.50 m	78.00	78.35				
6	62.75	62.75	3.87 dd, J = 12.0; 5.0 3.70 dd, J = 12.0; 3.5	$3.90 \ dd, J = 12.0; 5$ $3.76 \ dd, J = 12.0; 3.5$	62.80	62.60				
Xyl-1		105.60	4.49 d, J = 7.5							
2		74.00	$3.20 \ dd, J = 7.5; 9.5$							
3		77.78	$3.30 \ t, J = 9.5$							
4		72.00	3.52 m							
5		66.70	$3.30 \ dd, J = 10.0; 5.0$ $3.81 \ dd, J = 10.0; 3.0$							
Glc-1′				4.62 d, J = 7.5	106.00	106.70				
2′				3.15 dd, J = 7.5; 9.0	74.90	74.97				
3′				3.45 t, J = 9.0	77.90	77.80				
4′				3.39 t, J = 9.0	71.80	71.00				
5′				3.51 m	78.10	78.00				
6′				3.88 dd, J = 12.0; 5 3.72 dd, J = 12.0; 3.5	63.10	62.38				

^{*} Assignments were confined by COSY, HOHAHA, HETCOR, HMQC.

lected in the belt of Kolakani, Mali. The plant material was identified by the Traditional Medicine Division of Mali and a sample has been deposited in the Division Herbarium for future reference.

Extraction and isolation. The air-dried tuberous roots of V. kotschyana (100 g) were defatted with petrol then extracted with MeOH to give 7 g of residue. The MeOH extract was partitioned between H₂O and n-BuOH to afford an n-BuOH-soluble portion (2.9 g) that was chromatographed on a Sephadex LH-20 column (100×5 cm) with MeOH as the eluent. Frs of 8 ml each were collected and checked by TLC. Frs 29-34 (640 mg) from Sephadex were purified by DCCC with CHCl₃-MeOH-H₂O (7:13:8) in which the stationary phase consisted of the organic phase (discending mode, flow 10 ml hr⁻¹). About 450 frs (4 ml each) were collected. DCCC fractions 60-168 (200 mg) were sepd by RP-HPLC on a C18 μ -Bondapak column (30 cm \times 7.8 mm, flow rate 2.0 ml min⁻¹) with MeOH-H₂O (3:2) as the eluent to yield pure compounds (1) $(R_t = 12 \text{ min}, 22.5 \text{ mg}), (4) (R_t = 17 \text{ mg})$ min, 16 mg), (6) $(R_t = 30 \text{ min}, 18 \text{ mg})$. DCCC frs 248– 380 (220 mg) were further sepd by RP-HPLC on a C18 μ -Bondapak column (30 cm \times 7.8 mm, flow rate 2.0 ml min⁻¹) with MeOH- $H_2O(1:1)$ as the eluent to yield compounds (1) $(R_t = 26 \text{ min}, 5 \text{ mg}), (2) (R_t = 18 \text{ min}, 5 \text{ mg})$ min, 19 mg), (3) $(R_i = 16 \text{ min}, 12 \text{ mg})$; (5) $(R_i = 21 \text{ min}, 12 \text{ mg})$; min, 38 mg).

Methanolysis of compounds 1-6. Carbohydrate constituents. A soln of each compound (2 mg) in anhydrous 2N HCl-MeOH (0.5 ml) was heated at 80° in a

stoppered reaction vial for 12 hr. After cooling, the soln was neutralized with Ag_2CO_3 and centrifuged, then the supernatant was evapd to dryness under N_2 . The residue was reacted with TRISIL-Z and analysed by GLC. R_i s were identical to those of authentic methyl sugars.

Vernionioside D_1 (1): $[α]_D^{25} = +35.5$; $C_{35}H_{52}O_{11}$, negative FABMS m/z 647 [M-H]⁻, 619 [(M-H)-2Me]⁻, 485 [(M-H)-162]⁻, 469 [(M-H)- 178]⁻; ¹H NMR for sugar moiety (CD₃OD, 500 MHz): δ 4.52 (1H, d, J = 7.6 Hz, H-1'); 3.15 (1H, dd, J = 7.6 and 9.5 Hz, H-2'); 3.40 (1H, t, J = 9.5 Hz, H-3'); 3.36 (1H, t, J = 9.5 Hz, H-4'); 3.50 (1H, m, H-5'); 3.87 (1H, dd, J = 12.0; 5.0 Hz, H-6'); 3.70 (1H, dd, J = 12.0; 3.0 Hz, H-6'); for ¹H and ¹³C NMR data of aglycone and ¹³C NMR data of the sugar moiety see Tables 1 and 2, respectively.

Vernionioside D_2 (2): $[\alpha]_D^{2.5} = +54.1^\circ$; $C_{40}H_{60}O_{1.5}$, negative FABMS m/z 779 [M-H]⁻, 751 [(M-H)-2Me]⁻, 647 [(M-H)-132]⁻, 485 [(M-H)-(132+162)]⁻. NMR data of the aglycone are superimposable to those reported for compound 1; for ¹H and ¹³C NMR data of sugar moiety see Table 2.

Vernionioside D_3 (3): $[\alpha]_D^{25} = +60.0^\circ$; $C_{41}H_{62}O_{16}$, negative FABMS m/z 809 [M-H]⁻, 781[(M-H)-2Me]⁻, 647 [(M-H)-162]⁻, 485 [(M-H)-(162+162)]⁻. NMR data of the aglycone are superimposable to those reported for compound 1; for NMR data of sugar moiety see Table 2.

Vernionioside F_1 (4): $[\alpha]_D^{2.5} = +25.7^{\circ}$; $C_{35}H_{52}O_{12}$, negative FABMS m/z 663 [M-H]⁻, 635 [(M-H)-

^{**} Values of the resonances of compound 4 are superimpossible to those of 1, and of compound 5 to those of 2.

2Me]⁻, 501 [(M-H)-162]⁻, ¹H NMR for sugar moiety (CD₃OD, 500 MHz): δ 4.48 (1H, d, J = 7.5 Hz, H-1'); 3.18 (1H, dd, J = 7.5 and 9.5 Hz, H-2'); 3.39 (1H, t, J = 9.5 Hz, H-3'); 3.38 (1H, t, J = 9.5 Hz, H-4'); 3.50 (1H, m, H-5'); 3.89 (1H, dd, J = 12.0; 5.0 Hz, H-6'); 3.72 (1H, dd, J = 12.0; 3.0 Hz, H-6'); ¹³C NMR of sugar moiety are superimposable to those of compound 1, for ¹H and ¹³C NMR data of aglycone see Table 1.

Vernionioside F_2 (5): $[\alpha]_D^{2.5} = +33.4^\circ$; $C_{40}H_{60}O_{15}$, negative FABMS m/z 795 $[M-H]^-$, 765 $[(M-H)-2Me]^-$, 663 $[(M-H)-132]^-$, 501 $[(M-H)-(132+162)]^-$. The NMR data of the aglycone are superimposable to those reported for compound 4; the NMR data of sugar moiety are superimposable to those of compound 2.

Compound (6): $[\alpha]_D^{25} = +61.4^\circ$; $C_{31}H_{50}O_{11}$, negative FABMS m/z 597 [M-H]⁻, 435 [(M-H)-162]⁻, 273 [(M-H)-(162+162)]⁻; ¹H NMR for aglycone (CD₃OD, 500) MHz): δ 3.80 (1H, m, H-3); 2.35 (1H, dd, J = 12.0, 9.0 and 4.5 Hz, H-7a), 2.14 (1H, dd, J = 9.0 and 4.0 Hz, H-14); 2.08 (2H, m, H-11a); 2.02 (1H, ddd, J = 11.5, 9.9, 9.9 Hz, H-4a; 1.98 (1H, m, H-15a), 1.97 (1H, dd, J = 12.0, 3.0, 5.0 Hz, H-7b), 1.90 (1H, m, H-12a), 1.80 (1H, m, H-2a), 1.78 (1H, m, H-1a), 1.70 (1H, m, H-16a), 1.65 (1H, m, H-2b), 1.61 (1H, m, H-1b), 1.51 (1H, m, H-17a), 1.48 (1H, m, H-4b), 1.39 (1H, m, H-12b), 1.36 (2H, m, H-6), 1.34 (1H, m, H-15b), 1.32 (1H, m, H-5), 1.30 (1H, m, H-16b), 1.23 (1H, m, H-17b), 1.06 (3H, s, Me-19), 0.75 (3H, s, Me-18); for ¹³C NMR data of the aglycone see Table 1; for ¹³C NMR data of sugar moiety see Table 2.

REFERENCES

- 1. Aquino, R., Ciavatta, M. L., De Tommasi, N. and Gàcs-Baitz, E., *Phytochemistry*, 1992, 31, 1823.
- 2. Aquino, R., De Tommasi, N., De Simone, F. and Pizza, C., *Journal of Natural Products*, 1995, **58**, 672.
- 3. Igile, G., Oleszek, W., Jurzysta, M., Aquino, R., De Tommasi, N. and Pizza, C., *Journal of Natural Products*, 1995, **58**, 1438.
- 4. Aquino, R., De Tommasi, N., De Simone, F.,

- Pizza, C. and Peluso, G., Journal of Natural Products, 1996, 59, 555.
- Germanò, M. P., De Pasquale, R., Iauk, I., Galati, E. M., Keita, A. and Sanogo, R., Phytomedicine, 1996, 2, 229.
- Jisaka, M., Ohigashi, H., Takagaki, T., Nozaki, H., Tada, T., Hirota, M., Irie, R., Huffman, M. A., Nishida, T., Kaji, M. and Koshimizu, K., Tetrahedron, 1992, 48, 625.
- Ponglux, D., Wongseripipatana, S., Aimi, N., Oya, N., Hosokawa, H., Haginiwa, J. and Sakai, S., Chemical and Pharmaceutical Bulletin, 1992, 40, 553.
- Ohigashi, H., Jisaka, M., Takagaki, T., Nozaki, H., Tada, T., Huffmann, M. A., Nishida, T., Kaji, M. and Koshimizu, K., Agricultural and Biological Chemistry, 1991, 55, 1201.
- 9. Jisaka, M., Okigashi, H., Takegawa, K., Hirota, M., Irie, R., Huffman, M. A. and Koshimizu, K., *Phytochemistry*, 1993, **34**, 409.
- Breitmeir, E. and Voelter, W., Carbon-13 NMR Spectroscopy, 3rd completely revised edition. VCH, Veinheim, 1989.
- 11. Schmitt, P. and Benveniste, P., *Phytochemistry*, 1979, **18**, 445.
- Bridgeman, J. E., Cherry, P. C., Clegg, A. S., Evans, J. M., Jones Ewart, R. H., Masal, A., Kumar, V., Meamins, G. D., Morisawa, Y., Richards, E. E. and Woodgate, P. D., Journal of the Chemical Society (C), 1970, 250.
- Kirk, D. N., Toms, H. C., Douglas, C., White, K. A., Smith, K. E., Latif, S. and Hubbard, R. W. P., Journal of the Chemical Society, Perkin Transactions 2, 1990, 1567.
- Costantino, V., Mangoni, A., Fattorusso, E., Magno, S. and Pansini, M., Steroids, 1995, 60, 768
- Miyase, T., Shiokawa, K., Zhang, D. M. and Ueno, A., *Phytochemistry*, 1996, 41, 1411.
- Pistelli, L., Bilia, A. R., Marsili, A., De Tommasi, N. and Manunta, A., Journal of Natural Products, 1993, 56, 240.
- De Tommasi, N., De Simone, F., Pizza, C. and Mahmood, N., *Journal of Natural Products*, 1996, 59, 267.