

PII: S0031-9422(97)00419-6

SESQUITERPENE DIMER AND TRIMER FROM CHLORANTHUS JAPONICUS*

JUN KAWABATA,† ERI FUKUSHI and JUNYA MIZUTANI‡

Department of Bioscience and Chemistry; † Department of Applied Bioscience, Faculty of Agriculture, Hokkaido University, Kita-ku, Sapporo 060, Japan

(Received in revised form 18 March 1997)

Key Word Index—Chloranthus japonicus; Chloranthaceae; lindenane skeleton; sesquiterpene trimer; sesquiterpene dimer; 2D NMR.

Abstract—A novel sesquiterpene trimer, trishizukaol A, consisting of three lindenane units was isolated from the roots of *Chloranthus japonicus*. The structure was elucidated by 1D- and 2D-NMR methods. A structurally related sesquiterpene dimer was also found in the same plant. © 1997 Elsevier Science Ltd

INTRODUCTION

In the course of our continuing search for sesquiterpenes in plants of the Chloranthaceae, sesquiterpene lactones having an unusual lindenane skeleton have been isolated from Chloranthus japonicus Sieb. [2-4] and C. serratus Roem. et Schult. [4, 5]. The lindenane sesquiterpenes are characteristic constituents of the chloranthaceous plants [6]. Recently, a series of dimeric lindenanes named shizukaols were isolated from Chloranthus spp [1, 7-9]. A further survey of the chemical constituents of C. japonicus yielded a novel lindenane trimer, trishizukaol A (1), along with a structurally related dimer, shizukaol J (2). Although a number of lindenane dimers have been isolated from the chloranthaceous plants, this is the first report of the isolation of a trimeric lindenane sesquiterpene.

RESULTS AND DISCUSSION

Trishizukaol A (1) was assigned the molecular formula $C_{48}H_{54}O_{12}$ (FD-MS; [M]⁺ = m/z 822 and NMR: Table 1). The ¹H NMR spectrum of 1 showed three high-field signals ($\delta_{\rm H}$ 0.12, 0.32 and 0.36) characteristic of H-2 β of the lindenane skeleton. The HH COSY showed three sets of proton networks of a 1,2-disubstituted cyclopropane ring ($\delta_{\rm H}$ 0.36, 0.92, 1.90 and 1.95; 0.32, 1.03, 1.95 and 1.97; 0.12, 0.80, 1.60 and 1.86). Their chemical shifts and coupling pattern were quite similar to those found in H-1, 2 and 3 of the

previously isolated lindenanes [1-5, 7-9]. Therefore, 1 seemed to be a trimer of a lindenane sesquiterpene. The molecular formula of 1 corresponded to a homotrimer of a basic lindenatriene (C₁₆H₁₈O₄, 3) which is a component of all shizukaols [1, 7-9] previously found as lindenane dimers in Chloranthus. The presence of three each of the quaternary methyls ($\delta_{\rm H}$ 0.89, 0.99 and 1.04; $\delta_{\rm C}$ 15.2, 16.9 and 17.4), methoxyls ($\delta_{\rm H}$ 3.45, 3.57 and 3.58; δ_C 51.8, 52.0 and 52.2), ester carbonyls (δ_C 171.7, 172.9 and 176.4) and ketones ($\delta_{\rm C}$ 198.5, 201.3 and 201.8) strongly supported this proposal. The connectivity of the three units was determined by long-range CH correlation experiments such as HMBC and COLOC (Table 2). In unit A, one of the characteristic cyclopropyl methylene protons $(\delta_{\rm H} 0.36, {\rm H-}2\beta)$ was correlated to a quaternary carbon ($\delta_{\rm C}$ 58.5) in HMBC. This quaternary carbon was assigned to C-10 by additional long-range CH correlations with a singlet methyl ($\delta_{\rm H}$ 1.04, H-14) and a carbinol methine ($\delta_{\rm H}$ 3.92, H-9). C-10 also correlated with an olefinic proton (δ_H 7.33) which had a correlation with a carbonyl (δ_C 201.3) assignable to C-8 by a cross peak with H-9. Hence, the olefinic proton had to be assigned to H-6. H-6 was also correlated with a quaternary sp² carbon (δ_C 147.1, C-4) which had correlations with H-2 β and an allylic methyl ($\delta_{\rm H}$ 2.01, H-15). Thus unit A was a lindena-4,6-diene system. A quaternary carbon, C-11 ($\delta_{\rm C}$ 48.4), was assigned by correlations with H-6 and a singlet methyl ($\delta_{\rm H}$ 1.69, H-13). C-11 also showed correlation with a pair of non-equivalent methylene protons ($\delta_{\rm H}$ 2.53 and 3.35, H₂-15'). These protons had further correlations with two quaternary sp² carbons (δ_C 147.4, C-4' and 140.5, C-5') and a cyclopropyl methine ($\delta_{\rm C}$ 29.9, C-3'). The latter methine had to be included in another cyclopropane unit characteristic of the lindenane skel-

^{*}Part 11 in the series 'Studies on the Chemical Constituents of Chloranthaceae Plants'. For Part 10, see ref. [1]. †Author to whom correspondence should be addressed.

eton, namely, unit B. In the same manner as above, the lindena-4,6-diene system was also characterized for unit B and a linear connectivity between C-11 of unit A and C-15' of unit B was clarified by the HMBC correlations of H-15' with C-7, 11, 12 and 13. On the other hand, unit C was found to be a lindena-4,7(11)diene system, as shown for most shizukaols [1, 7, 8], by the HMBC data (Table 2). Connectivity between the units B and C was not very easy to determine. In unit B, a quaternary carbon at δ_C 52.7 was assigned to C-11' by the HMBC correlations with H-6' ($\delta_{\rm H}$ 6.98). Thus C-11' was connected to unit C since it appeared as a quaternary sp³ carbon. This carbon was also correlated with non-equivalent methylene protons ($\delta_{\rm H}$ 1.99 and 2.33) which were assigned to H₂-13'. The total unsaturation index of the molecule is 22 and thus the units B and C had to be connected by formation of a ring. Therefore, C-13' was also connected to unit C. In the case of unit C, the lindena-4,7(11)-diene structure needed connection at both C-6" and C-15". Two non-equivalent methylene protons of H₂-15" at $\delta_{\rm H}$ 1.99 and 2.44 were severely overlapped with the signals of H₂-13'. However, their complex multiplet nature strongly indicated the presence of J couplings between H₂-15" and H₂-13', which indicated the C-15"/C-13' connection since H₂-15" would be rather simple AB doublet pairs if C-15" was connected to the quaternary C-11'. The NOEs of H-6" with H-6' and H-13' supported this connectivity though sufficient HMBC correlations were not available between H-6" and the carbons in the unit B. Hence, the connectivity between the units B and C was established. The relative stereochemistry of 1 was determined by analysis of the NOE data (Fig. 1). The typical NOE correlations characteristic of lindenanes such as H-2 β /H-14, H-1/H-9 and H-6/H-15 were also found in the three units in 1 though, for clarity they are not shown in Fig. 1. The stereochemical relationships of the units A, B and C are tentatively assigned by the inter-unit NOEs shown in Fig. 1. The absolute configuration was also proposed through the biogenetic relationships with other Chloranthus lindenanes mentioned below. This is the first isolation of a trimeric lindenane. The manner of connection between the three units is unprecedented in the previously isolated lindenane dimers [1, 7-11]. Signal broadening of the 12 carbons in the NMR (Table 1) was observed possibly due to the complex nature of the total structure.

Shizukaol J (2) was assigned the molecular formula of $C_{32}H_{36}O_8$ by FD-MS ([M]⁺ m/z 548) and NMR (Table 1). The molecular formula indicated 2 to be a homo-dimer of the lindenatriene 3. Detailed analysis of the 1D and 2D NMR data including HMBC experiments (Table 2) yielded a combined structure for 2 corresponding to units A and B of 1. The ¹H and ¹³C NMR assignments of 2 were well related to those of 1 as shown in Table 1. The terminal structure of the unit B of 2 was shown to be a vinylidene group ($\delta_{\rm H}$ 5.77 and 6.26, both s, H-13'; δ_C 128.3(CH₂), C-13' and 136.3(Cq), C-11') in place of the connection to another lindenane unit as in 1. The higher field proton signal of H-13' ($\delta_{\rm H}$ 5.77) was assigned to the *endo* proton since it showed a NOE with H-6' ($\delta_{\rm H}$ 6.90). Hence, the structure of 2 was determined. The stereochemistry was determined by the NOE interactions similar to those of 1 (Fig. 1).

The plausible biogenetic relationships of 1-3 are shown in Scheme 1. Subtraction of a proton from C-13 of the lindenatriene 3 and successive double bond migration results in a carbanion at C-15 which then attacks C-11 of another molecule of 3 to give the dimer 2. Finally, a Diels-Alder type cycloaddition between the terminal methylene of 2 and the C-15/C-4/C-5/C-6 diene of the third molecule of 3 completes the structure of the trimer 1. So far, more than 10 lindenane dimers containing 3 as a structural unit have been isolated from *Chloranthus*. All attempts to isolate monomeric 3, however, have failed. Structural variations and biogenetic correlations [9] of such lindenane dimers suggest that these compounds are synthesized in plant cells.

EXPERIMENTAL

¹H and ¹³C NMR: (CD₃)₂CO or CDCl₃, chemical shifts relative to residual signals of each solvent: (CD₃)₂CO, $\delta_{\rm H}$ 2.04 and $\delta_{\rm C}$ 29.8; CDCl₃, $\delta_{\rm H}$ 7.23 and $\delta_{\rm C}$ 77.0. Air-dried roots (1.6 kg) of *C. japonicus* were extracted with Et₂O at room temp. The extracts were washed with 5% NaHCO₃ and chromatographed over silica gel using a hexane–Et₂O and then Et₂O–Me₂CO gradient. The Et₂O–Me₂CO (7:3) eluate was subjected to silica gel prep. TLC developed with Et₂O–MeOH (25:1). A characteristic yellow fluorescent band was scraped off and further purified by silica gel prep. TLC (CHCl₃–MeOH, 13:1) to give 1 (28 mg) as a yellow viscous gum. The ether eluate of the first silica gel

Table 1. ¹H and ¹³C NMR data of compounds 1 and 2

		1 ((acetone-d ₆)	2 (chloroform-d)
		δC	$\delta_{ extsf{H}}$	$\delta_{ m C}$	δ_{H}
Unit A	1	24.8	1.90 m	24.2	1.93 m
_ 1110 4 1	2	13.2	α 0.92 ddd (8,8,4)	13.0	$\alpha 0.94 m$
			β 0.36 ddd (4,4,3)		β 0.38 ddd (4,4,3)
	3	29.3	1.95 m	28.9	1.87 m
	4	147.1		146.8	_
	5	136.8	_	135.7	
	6	137.4	7.33 s	136.4	$7.10 \ s$
	7	136.6	_	135.2	
	8	201.3		200.5	_
	9	82.1	3.92 d(4)	80.9	3.95 s
	10	58.5		57.5	_
	11	48.4		47.6	
	12	176.4		176.0	_
	13	23.9	1.69 s	23.3	1.66 s
	14	16.9	1.04 s	16.5	1.06 s
	15	15.1	2.01 s	15.1	1.96 s
	16	52.2	3.58 s	52.3	3.74 s
	OH	_	4.18 d (4)	-	_
Hnit D	1′	26.8	1.97 m	26.0	2.05 m
Unit B	1' 2'	26.8 13.9	1.97 m α 1.03 ddd (8,8,4)	13.2	2.03 m α 0.96 m
	2	13.9	β 0.32 ddd (4,4,3)	13.2	β 0.30 ddd (4,4,3)
	3′	29.9	1.95 m	29.4	1.84 m
	3 4′	29.9 147.4	1.93 m	147.8	1.04 ///
	4 5'			140.1	_
	3 6′	140.5 137.8*	6.98 s	137.9	6.90 s
	7′		0.96 3 	131.6	0.90 3
	/ 8′	139.5* 198.5		198.7	
	8 9′		4.00 4.(3)	80.0	4.27 s
		80.7	4.02 d(3)	56.5	4.273
	10′	56.8 52.7*		136.3	
	11' 12'	172.9*		166.5	_
	13'	34.9*	 α 1.99 m	128.3	endo 5.77 s
	13	34.9	β 2.33 m	120.3	exo 6.26 s
	14′	17.4	0.89 s	17.3	0.94 s
	15'	36.3	$\alpha \ 2.53 \ d \ (14)$	36.0	$\alpha \ 2.57 \ d \ (14)$
	13	30.3	β 3.35 d (14)	50.0	β 3.35 d (14)
	16′	51.8*	3.45 s	52.3	3.66 s
		31.6	4.07 d (3)		J.00 3
	OH′		4.01 a (3)	_	
Unit C	1"	26.5	1.86 ddd (8,7,4)		
	2"	15.4	$\alpha \ 0.80 \ ddd \ (8,8,4)$		
			β 0.12 ddd (4,4,3)		
	3"	23.8	1.60 ddd (7,6,4)		
	4"	140.9*	-		
	5"	134.6*	_		
	6"	43.8*	3.55 m		
	7"	135.8*			
	8"	201.8*	_		
	9"	79.9	4.21 br s		
	10"	52.2			
	11"	139.9*			
	12"	171.7			
	13"	19.0	1.69 s		
	14"	15.2	0.99 s		
	15"	24.6	α 1.99 m		
			β 2.44 m		
	16"	52.0	3.57 s		
	OH"	_	3.87 br s		

^{*} Broadening signals.

Table 2. Long-range CH correlations found in compounds 1 and 2*

		1 (acetone- d_6)	2 (chloroform-d)	
	С	H	Н	
Unit A	1	2α, 2β, 9, 14	9, 14	
	2	_	_	
	3	2α , 2β , 15	15	
	4	$1, 2\alpha, 2\beta, 3, 6, 15$	6, 15	
	5	1, 3, 14, 15	14, 15	
	6	_	_	
	7	6, 9, 13, $15'\alpha$	6, 13, $15'\alpha$	
	8	6, 9, OH	6	
	9	1, 14, OH	_	
	10	1, 2α , 2β , 3, 6, 9, 14, OH	6, 9, 14	
	11	6, 13, $15'\alpha$, $15'\beta$	6, 13, 15' α , 15' β	
	12	16, $15'\beta$	13, 16, $15'\beta$	
	13	$15'\alpha$, $15'\beta$	$15'\alpha$, $15'\beta$	
	14	9	9	
	15		_	
	16	_	_	
Unit B	1′	2'β, 9', 14'	9′, 14′	
	2′	_	-	
	3′	$2'\alpha$, $2'\beta$, $15'\alpha$, $15'\beta$	$15'\alpha$, $15'\beta$	
	4′	$2'\alpha$, $2'\beta$, $6'$, $15'\alpha$, $15'\beta$	6', $15'\alpha$, $15'\beta$	
	5′	$1', 3', 14', 15'\alpha, 15'\beta$	$14', 15'\alpha, 15'\beta$	
	6′	_	_	
	7'	6', 9', 13'α	6', 13'endo, 13'exo	
	8′	6', 9'	6', 9'	
	9	1', 14', OH'		
	10′	$1', 2'\alpha, 2'\beta, 3', 6', 9', 14'$	6', 9', 14'	
	11'	6', 13'β, 15"β	6', 13'endo, 13'exo	
	12′	13'β, 16'	13'endo, 13'exo, 16'	
	13′			
	14′	9′	9′	
	15′	13	13	
	16′			
Unit C	1"	2"α, 2"β, 14"		
	2"	— , = , = . —		
	3"	2"α, 2"β		
	4"	$13'\beta$, 1", 2" α , 2" β , 15" β		
	5"	1", 3", 14"		
	6"	$13'\alpha$, $13'\beta$		
	7"	13", 13 p		
	8"			
	9"	1", 14"		
	10"	1", 14 1", 2"α, 2"β, 9", 14", ΟΗ"		
	11"	13"		
	12"	13", 16"		
	13"	15,10		
		_		
	14"	13/4 13/9		
	15"	$13'\alpha$, $13'\beta$		
	16"	_		

^{*} Determined by HMBC and/or COLOC experiments.

chromatography was fractionated by successive silica gel prep. TLC (CHCl₃-MeOH, 50:1 and then hexane–EtOAc, 2:1) to yield **2** (1.6 mg) as a yellow oil.

Trishizukaol A (1). Yellow gum, $[\alpha]_D^{25} - 27^\circ$ (CHCl₃; c 1.10). FD-MS m/z (rel. int.): 822 [M]⁺ (100), 790 (30), 548 (17), 274 (15).

Shizukaol J (2). Yellow oil, $[\alpha]_D^{25} + 62^\circ$ (CHCl₃; c

0.20) FD-MS m/z (rel. int.): 548 [M]⁺ (100); EI-MS m/z (rel. int.): 548 [M]⁺ (16), 275 (43), 247 (44), 243 (58), 215 (80), 43 (100).

Acknowledgements—We are grateful to Mr Kenji Watanabe, GC-MS and NMR Laboratory of our Faculty, for measuring FD mass spectra. Part of this

Fig 1. Some of the NOE correlations in trishizukaol A (1) and shizukaol J (2).

Scheme 1. Plausible biogenetic route for the formation of trishizukaol A (1) and shizukaol J (2) from 3.

work was supported by a Grant-in-Aids for Scientific Research (no. 06404011) from the Ministry of Education, Science and Culture of Japan.

REFERENCES

- Kawabata, J., Fukushi, E. and Mizutani, J., Phytochemistry, 1995, 39, 121.
- Kawabata, J., Tahara, S. and Mizutani, J., Agricultural and Biological Chemistry, 1981, 45, 1447.
- Tahara, S., Fukushi, Y., Kawabata, J. and Mizutani, J., Agricultural and Biological Chemistry, 1981, 45, 1511.
- 4. Kawabata, J. and Mizutani, J., Agricultural and Biological Chemistry, 1989, 53, 203.
- 5. Kawabata, J., Fukushi, Y., Tahara, S. and Mizu-

- tani, J., Agricultural and Biological Chemistry, 1985, 49, 1479.
- 6. Kawabata, J. and Mizutani, J., Agricultural and Biological Chemistry, 1988, 52, 2965.
- 7. Kawabata, J., Fukushi, Y., Tahara, S. and Mizutani, J., *Phytochemistry*, 1990, 29, 2332.
- 8. Kawabata, J. and Mizutani, J., Phytochemistry, 1992, 31, 1293.
- 9. Kawabata, J., Fukushi, E. and Mizutani, J., *Phytochemistry*, 1993, **32**, 1347.
- Kusano, G., Abe, M., Koike, Y., Uchida, M., Nozoe, S. and Taira, Z., Yakugaku Zasshi, 1991, 111, 756.
- Okamura, H., Iwagawa, T. and Nakatani, M., Bulletin of the Chemical Society of Japan, 1995, 68, 3465.