PII: S0031-9422(97)00481-0

DEPENDENCE OF THE ¹H NMR CHEMICAL SHIFTS OF RING F RESONANCES ON THE ORIENTATION OF THE 27-METHYL GROUP OF SPIROSTANE-TYPE STEROIDAL SAPOGENINS*

PAWAN K. AGRAWAL,† PENSRI BUNSAWANSONG‡§ and GARETH A. MORRIS‡

Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India; ‡ Department of Chemistry, University of Manchester, Manchester, M13 9PL, U.K.

(Received in revised form 10 April 1997)

Key Word Index—Steroidal sapogenin; 2D NMR, 25R/25S stereochemical assignments.

Abstract—A relationship between the ¹H NMR chemical shifts of the ring F resonances and orientation of the H_3 -27 group has been derived for the establishment of 25R- and 25S-stereochemistry in spirostane type of steroidal sapogenins. © 1997 Elsevier Science Ltd

INTRODUCTION

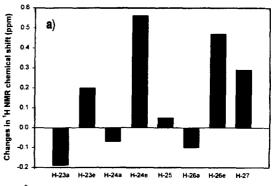
The steroidal sapogenins and their glycosides (steroidal saponins), widely distributed in various plant families [2], are attracting attention, as some have shown biological activities as inhibition to platelet aggregation [3], reduction of blood glucose level [4], local antitussive effect for dry cough [5], molluscicidal activities [6] and inhibition of the proliferation of various kinds of human malignant tumor cells in vitro [7]. The variation in spirostane structure generally arises from the configuration at C-5, i.e. A/B ring junction, and the configuration of the methyl group at C-25. Depending upon the equatorial or axial orientation of the 27-methyl group, the spirostanoids have been grouped in to 25R or 25S types, respectively. The question of the establishment of 25R/25S stereochemistry has been earlier addressed by the consideration of IR absorption bands [8, 9], 27-methyl group ¹H NMR chemical shift [10] and ¹³C NMR chemical shifts [11, 12]. Although, the ¹³C NMR approach has been widely employed for the stereochemical establishment of these compounds [13] the relative insensitivity of ¹³C NMR as compared with ¹H NMR encourages the search for a relationship between the 25R/25S-stereochemistry and ¹H NMR data.

RESULTS AND DISCUSSION

To derive a primary set of 1 H NMR data, a pair of epimeric 5β -spirostanes: smilagenin (25R- 5β -spirostan- 3β -ol (1)) and sarsasapogenin (25S- 5β -spirostan- 3β -ol (2)) were investigated by two-dimensional techniques [14]. 1 H- 1 H COSY and TOCSY led to the partial assignment of the 1 H NMR resonances, which were correlated with the corresponding one-bond coupled 13 C signals using HMQC. A combined application of HMQC-TOCSY, HSQC-RELAY and HMBC experiments further led to prove 1 H NMR identification of the remaining 1 H assignments as well as of the quaternary carbons. The 13 C assignments of 2 were verified by INADEQUATE experiments. The 1 H and 13 C NMR assignments for 1 and 2 are listed in Table 1.

Since spectral data for both compounds were measured under the same experimental conditions, any alteration in the ¹H NMR shielding pattern must be due to the difference in H₃-27 stereochemistry. A comparison of the ¹H NMR data for 1 and 2 (Table 1) reveals that the ¹H NMR resonances exhibit very similar ¹H NMR chemical shifts for all of the rings except

^{*}Part 46 in the series, 'NMR spectral Investigations.' For part 45 see ref. [1].


[†] Author to whom correspondence should be addressed.

[§] Present address: Chemistry Department, Kasetsart University, Bangkhen, PO Box 1011, Bangkok, Thailand.

Table 1. ¹³C and ¹H NMR chemical shift assignments of smilagenin 1 and sarsasapogenin 2

Carbon		1	2			
	¹³ C	H ¹	¹³ C	¹H		
l	29.95	1.40, 1.52	29.95	1.39, 1.50		
2	27.82	1.40, 1.58	27.79	1.40, 1.50		
3	67.12	4.11	67.12	4.11		
4	33.54	1.33, 1.98	33.51	1.32, 1.97		
5	36.58	1.72	36.51	1.72		
6	26.56	1.16, 1.91	26.56	1.15, 1.90		
7	26.54	1.07, 1.58	26.54	1.04, 1.39		
8	35.28	1.58	35.27	1.58		
9	39.85	1.33	39.85	1.32		
10	35.28		35.28			
11	20.90	1.25, 1.40	20.90	1.25, 1.39		
12	40.30	1.16, 1.72	40.31	1.15, 1.72		
13	40.70	_	40.70			
14	56.48	1.16	56.47	1.15		
15	31.80	1.25, 1.98	31.74	1.25, 1.97		
16	80.93	4.40	81.02	4.40		
17	62.27	1.77	62.09	1.75		
18	16.49	0.76	16.50	0.76		
19	23.92	0.98	23.92	0.97		
20	41.61	1.86	42.12	1.81		
21	14.51	0.97	14.34	0.99		
22	109.26		109.74			
23	341.39	1.58, 1.67	25.94	1.39, 1.87		
24	28.80	1.46, 1.64	25.77	2.02, 1.39		
25	30.31	1.64	27.08	1.69		
26	66.86	3.48, 3.38	66.13	3.95, 3.28		
27	17.14	0.79	16.05	1.08		

ring F. The most noteworthy feature is that the equatorial protons of H_2 -23, H_2 -24 and H_2 -26 resonate 0.2 to 0.5 ppm to lower field in 1 than in 2, the axial protons resonate 0.07 to 0.19 ppm to higher field (Fig.

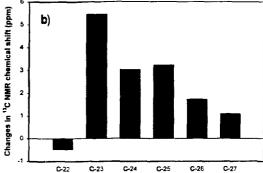


Fig. 1. Changes in the (a) 1 H and (b) 13 C NMR chemical shifts for ring-F resonances. The bars represents the difference in chemical shifts ($\Delta\delta = \delta_{1}$ - δ_{2}).

1). This implies that an axial orientation of the 27-Me group is reflected not only in its own appearance at 0.29 ppm to lower field, but also in the dispersion of the ¹H NMR chemical shifts of the methylene protons occupying β and γ -positions [Fig. 1(a)]. In general, the difference between the chemical shifts for geminal protons at positions C-24 and C-26 was three to four times higher in 25*S*-compounds than in 25*R*-epimers.

Table 2. HNMR chemical shift data for ring F resonances for some steroidal sapogenins and steroidal saponins+

	A ⁺ [18]	B ⁺ [19]	C ⁺ [20]	D ⁺ [21]	E ⁺ [22]	F ⁺ [23]	G ⁺ [15]	H+ [16]	I+ [17]	J + [17]	K ⁺ [24]	L ⁺ [25]
H ₂ -23						1.60	1.58	1.58				1.96
						1.72	1.68	1.68				1.39
H_2 -24						1.55	1.56	1.64				2.07
						1.55	1.42	1.43				1.46
H-25						1.56	1.62	1.61				1.72
H_2-26	3.58	3.59	3.56	3.59	3.52	3.57	3.35	3.38	4.07	4.05	4.04	3.97
	3.50	3.50	3.47	3.52	3.52	3.46	3.42	3.36	3.38	3.37	3.35	3.31
H_3-27	0.70	0.70	0.70	0.70	0.69	0.71	0.80	0.76	1.08	1.08	1.06	1.13

*A (25R)-5α-spirostane-3β-ol (Tigogenin) 3-O-{O-α-L-rhamnopyranosyl-(1 \rightarrow 2)-O-β-D-xylopyranosyl-(1 \rightarrow 2)-O-β-D-glucopyranosyl-(1 \rightarrow 4)-β-D-galactopyranoside}; **B** (25R)-5α-spirostane-2α,3β-diol (gitogenin); **C** (25R)5α-spirostane-2α,3β-diol (gitogenin)-3-O-β-D-galactopyranoside; **D** (25R)-5α-spirostane-1β,3β-diol(Brisbagenin); **E** (25R)-5α-spirostane-3β, 17-diol (Penogenin) 3-O-{O-α-L-rhamnopyranosyl-(1 \rightarrow 2)-O-[β-D-galactopyranosyl-(1 \rightarrow 3)-β-D-glucopyranosyl-(1 \rightarrow 3)-β-D-glucopyranosyl-(1 \rightarrow 3)-β-D-glucopyranosyl-(1 \rightarrow 4)β-D-glucopyranosyl-(1 \rightarrow 3)-]O-β-D-glucopyranosyl-(1 \rightarrow 4)O-β-D-glucopyranosyl-(1 \rightarrow 3)-O-α-L-rhamnopyranosyl-(1 \rightarrow 4)-O-β-D-glucopyranosyl-(1 \rightarrow 3)-O-α-L-rhamnopyranosyl-(1 \rightarrow 3)-O

A literature search [13, 15–25] showed that the chemical shifts for H_2 -24 have not been frequently reported but the reported values for $\Delta \delta_{H^26e-H^26a}$ were consistent with the above observations (Table 2). A similar comparison of the ¹³C NMR chemical shifts for 1 and 2 [Fig. 1(b)] showed that all the carbon resonances except C-22 occur at lower field in 1 than in 2.

It is worthwhile to mention that substitution in rings A–D does not usually affect the chemical shifts of ring F. However, substitution in ring F will modify the ¹H NMR shielding pattern, so the ¹H NMR shielding behaviour described will be of general applicability for ring-F unsubstituted 22α-spirostanoids.

EXPERIMENTAL

The 1D and 2D NMR experiments were carried out in CDCl₃ in 5 mm tube at ambient temp. (20°) with an indirect detection probe on a Varian Unity 500 MHz NMR spectrometer. The chemical shifts are expressed on the δ scale.

Acknowledgements—PKA is thankful to Prof. Sushil Kumar, Director (CIMAP) and Dr R. P. Sharma, (Head, Phytochemical Technology Division) for constant encouragement.

REFERENCES

- Agrawal, P. K., in Flavonoids and Bioflavonoids 1995, ed. S. Antus, M. Gabor and K. Vetschera. Akademiai Kiado, Budapest, 1996, p. 73.
- Mahato, S. B., Ganguli, A. N. and Sahu, N. P., *Phytochemistry*, 1987, 21, 639.
- Niwa, A., Takeda, M., Ishiwara, M., Nakamoto, Y., Yamasaki, K., Kohda, H., Nishino, H., Segawa, K., Fijimura, K. and Kuramoto, A., Yakugaku Zasshi, 1988, 108, 555.
- Nakashima, N., Kimura, I., Kimura, M. and Matsuura, H., Journal of Natural Products, 1993, 56, 345.
- 5. Miyata, T., Journal of Traditional Sino Jpn. Med., 1992, 13, 276.
- 6. Marston, A. and Hostettmann, K., Phytochemistry, 1985, 24, 639.
- 7. Mimaki, Y., Sashida, Y., Kuroda, M., Nishino, A., Satomi, Y. and Nishino, H., *Biological and Pharmaceutical Bulletin*, 1995, **18**, 467.
- 8. Jones, R. N., Katzenellenbogen, E. and Dobriner,

- K., Journal of the American Chemical Society, 1953, 75, 158.
- 9. Eddy, C. R., Wall, M. E. and Scott, M. K., *Analytical Chemistry*, 1953, **25**, 266.
- 10. Patel, A. V., Blunden, G., Crabb, T. A., Sauvaire, Y. and Baccou, Y., Fitoterapia, 1987, 58, 67.
- Agrawal, P. K., Jain, D. C., Gupta, R. K. and Thakur, R. S., *Phytochemistry*, 1985, 24, 2479.
- Agrawal, P. K., Jain, D. C. and Pathak, A. K., Magnetic Resonance in Chemistry, 1995, 33, 923.
- Agrawal, P. K., in Saponins used in Food and Agriculture, ed. G. R. Waller and K. Yamasaki. Plenum Press, New York, 1996, p. 223.
- Agrawal, P. K., Bunsawanson, P. and Morris, G.
 A. Magnetic Resonance in Chemistry, 1997, 35, 441
- Kirk, D. N., Toms, H. C., Douglas, C., White, K. A., Smith, K. E., Latif, S. and Hubbard, R. W. P., Journal of the Chemical Society, Perkin Transactions II, 1990, 1567.
- 16. Puri, R., Wong, T. C. and Puri, R. K., Magnetic Resonance Chemistry, 1993, 31, 278.
- 17. Achenbach, H., Hubner, H., Brandt, W. and Reiter, M., *Phytochemistry*, 1994, 35, 1527.
- Inoue, T., Mimaki, Y., Sashida, Y., Nishino, A., Satomi, Y. and Nishino, H., *Phytochemistry*, 1995, 40, 521.
- Mimaki, Y., Kanmoto, T., Kuroda, M., Sashida, Y., Satomi, Y., Nishino, A., and Nishino, H., Phytochemistry, 1995, 42, 1065.
- Shvets, S. A., Kintya, P. K. and Naibi, M. A., in Saponins used in Traditional and Modern Medicine, ed. G. R. Waller and K. Yamasaki. Plenum Press, New York, 1996, p. 25.
- Inoue, T., Mimaki, Y., Sashida, Y., Nikaido, T. and Ohmoto, T., *Phytochemistry*, 1995, 39, 1103.
- 22. Mimaki, Y., Nakamura, O., Sashida, Y., Nikaido, T. and Ohmoto, T., *Phytochemistry*, 1995, **38**, 1279.
- Mimaki, Y., Kanmoto, T., Kuroda, M., Sashida, Y., Nishino, A., Satomi, Y. and Nishino, H., Chemical and Pharmaceutical Bulletin, 1995, 43, 1190.
- Mimaki, Y., Nakamura, O., Sashida, Y., Koike, K., Nikaido, T., Ohmoto, T., Nishino, A., Satomi, Y. and Nishino, H., Chemical and Pharmaceutical Bulletin, 1995, 43, 971.
- 25. Branke, J. T. and Haslinger, E., Liebigs Annalen Chemisch, 1995, 587.