PII: S0031-9422(97)00650-X

(—)-EPICATECHIN 5-O-β-D-XYLOPYRANOSIDE FROM BROSIMOPSIS ACUTIFOLIUM

Franco Ferrari,* Franco Delle Monache and Roberto Alves De Lima†

Centro Chimica dei Recettori del C.N.R., Università Cattolica del Sacro Cuore, L. F. Vito 1, 00168 Rome, Italy; † Departamento de Quimica, Universidade de Brasilia, Brasilia, Brazil

(Received 28 May 1997)

Key Word Index—Brosimopsis acutifolium; Moraceae; stem bark; (-)-epicatechin 5-O- β -D-xylopyranoside; NOE.

Abstract—In addition to 3,4-dihydroxybenzoic acid and (-)-epicatechin, a new glycoside of the latter has been isolated from the methanolic extract of the stem bark of *Brosimopsis acutifolium*. Its structure was established to be (-)-epicatechin 5-O- β -D-xylopyranoside on the basis of spectroscopic and chemical methods. © 1998 Elsevier Science Ltd. All rights reserved

INTRODUCTION

In previous papers we have reported the isolation and characterization of a series of isoprenylated polyphenols from the root bark of *Brosimopsis oblongifolia* (Hub) Ducke [1–4]. In this communication we report the isolation and structure elucidation of a new compound 1 from stem bark of *B. acutifolium*, known in Brazil with the trivial name 'murure' [5], and used in traditional medicine as depurative, antirheumatic and for skin affections [6].

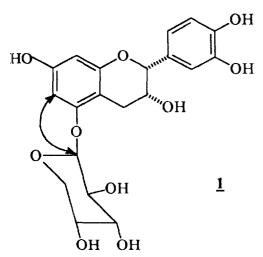


Fig. 1. Observed NOE is indicated by arrow

RESULTS AND DISCUSSION

Compound 1 was obtained as an amorphous laevorotatory powder. The unambiguous ¹H and ¹³C NMR assignments are reported in Table 1, as a result of HETCOR and selective INEPT experiments. The ¹H NMR spectrum exhibited signals for five aromatic

Table 1. ¹H (300 MHz) and ¹³C NMR (75 MHz) data for 1 in DMSO-d₄

	$\delta_{\sf H}$	δ_{C}
2	4.75 br s	78.45
3	3.98 br s	64.98
4	2.69 d (3.3 Hz)	28.48
4a		101.36
5		156.83
6	6.08 d (2.2 Hz)*	96.91
7	100 th, see	156.60
8	5.91 d (2.2 Hz)†	95.57
8a	100 th,	155.72
1'		130.70
2'	6.90 br s	115.14 ^a
3′	ete-	144.80 ^b
4		144.76 ^b
5'	6.66 br s	115.09 ^a
6′	6.66 br s	118.16
1"	4.68 d (7.41 Hz)	101.80
2"	3.20-3.70 m	73.40
3"	3.20-3.70 m	76.87
4"	$3.20-3.70 \ m$	69.65
5"	3.20-3.70 m	65.94

^{*} INEPT long-range correlations with C-5, C-7 and C-4a.

[†]INEPT long-range correlations with C-7, C-8a and C-4a

a.b Interchangeable.

^{*}Author to whom correspondence should be addressed.

Short Report

protons, two of which were meta-coupled (δ 5.91 and 6.08, J=2.2 Hz), two broad 1H singlets (δ 4.75 and 3.98), the fifth a 2H doublet (δ 2.69, 3.3 Hz), suggesting the presence of an epicatechin unit in the molecule. In addition, the presence of a carbohydrate residue was indicated by the anomeric proton resonance at δ 4.68 (d, J=7.41) and overlapping signals at δ 3.20–3.70. The ¹³C NMR signals for the sugar were consistent with those of a xylopyranoside moiety. These findings were confirmed by enzymatic hydrolysis (see Experimental). The location of the sugar was fixed by the mutual enhancement of H-6 and H-1" signals in the difference NOE experiments. On this basis 1 was assigned the structure of (-)-epicatechin 5-O- β -D-xylopyranoside.

1166

EXPERIMENTAL

Plant material. Stem bark of Brosimopsis acutifolium (Hub) Ducke was obtained from Yerbalatina, Import-Export, Brazil.

Extraction and isolation. The Me₂CO-soluble portion (2 g) of the MeOH extract of the stem bark of B. acutifolium was chromatographed on silica gel (CHCl-Me OH-H₂O, 13:7:2; lower phase) to afford 3,4-hydroxybenzoic acid (100 mg), (-) epicatechin (50 mg) and 1 (mg 80).

(-)-Epicatechin 5-O-β-D-xylopyranoside (1). Amorphous powder. [α]_D – 55° (MeOH; c 0.30). ¹H NMR and ¹³C NMR data (DMSO- d_6): see Table 1. ¹H NMR (C_5D_5N), δ : 3.28 (dd, J = 4.4 and 16.6 Hz, H-4a), 3.63 (dd, J = 2.7 and 16.6 Hz, H-4e), 4.0–4.5 (m, H2"-H5"), 4.58 br t, H-3), 5.22 (br s, H-2), 5.42 (d, J = 7.3, H-1"), 6.74 (d, J = 2.3 Hz, H-8), 7.04 (d,

J = 2.3 Hz, H-6), 7.28 (br s, H-5′-H-6′), 7.88 (br s, H-2′); 13 C NMR (C_5D_5N), δ : 29.56 (C-4), 66.30 (C-3), 67.00 (C-5″), 70.71 (C-4″), 74.61 (C-2″), 78.67 (C-3″), 79.86 (C-2), 97.35 (C-8), 98.33 (C-6), 102.37 (C-4a), 103.50 (C-1″), 115.87/116.10 (C-2′, C-5′), 119.13 (C-6′), 131.76 (C-1′), 146.61/146.70 (C-3′, C-4′), 156.98/158.23/158.36 (C-5, C-7, C-8a).

Enzymatic hydrolysis of 1. To a soln of 1 (30 mg) β -glycosidase (30 mg) was added. The mixt. was stirred for 3 days at room temp. and then extracted with EtOAc. The organic residue was purified on silica gel (EtOAc) to give (—) epicatechin identified by $[\alpha]_D$, co-TLC and ¹H NMR. The aq. phase was lyophilized and identified as xylose by co-TLC (*n*-BuOH–HOAc–H₂O; 4:1:5, upper phase).

Acknowledgements—The authors are grateful to Yerbalatina Import-Export, Alvorada, Paraguana, Parana, Brazil for the plant material.

REFERENCES

- Messana, I., Ferrari, F. and Mesquita de Araujo, M. do C., Planta Medica, 1987, 541.
- Ferrari, F., Messana, I. and Mesquita de Araujo, M. do C., *Planta Medica*, 1989, 70.
- Messana, I., Ferrari, F. and Mesquita de Araujo, M. do C., Tetrahedron, 1988, 44, 6693.
- Messana, I., Ferrari, F., de Mello, J. F. and Mesquito de Araujo, M. do C., Heterocycles, 1989, 29, 683.
- Correia, M. P., Dicionario das Plantas Uteis do Brasil e das Exoticas Cultivadas, Vol. V. Imprensa Nacional, Rio de Janeiro, 1969, p. 275.
- 6. Le Cointe, P., Arvores e Planta Uteis. Imprensa Nacional, Rio de Janeiro, 1947, p. 321.