

PII: S0031-9422(97)00744-9

GERMACRANOLIDES AND A MONOTERPENE CYCLIC PEROXIDE FROM ARTEMISIA FRAGRANS

J. Alberto Marco,* Juan F. Sanz-Cervera, Francisco J. Ropero, Natalia Batlle, Miguel Guara† and Joan Vallès-Xirau;*

Departamento de Química Orgánica, Universidad de Valencia, E-46100 Burjassot, Valencia, Spain; † Departamento de Biología Vegetal, Universidad de Valencia, E-46100 Burjassot, Valencia, Spain; † Laboratorio de Botànica, Facultat de Farmàcia, Universitat de Barcelona, E-08028 Barcelona, Spain

(Received 23 May 1997)

Key Word Index—Artemisia fragrans; Compositae; Anthemideae; Seriphidium; sesquiterpene lactones; germacranolides; cyclic monoterpene peroxide.

Abstract—The aerial parts of Artemisia fragrans collected in Armenia yielded a new cyclic monoterpene peroxide with the irregular santolinyl framework, together with several known germacranolides. Comparison with previously published chemical results suggests these may actually have been performed on a different, although closely related species. © 1998 Elsevier Science Ltd. All rights reserved

INTRODUCTION

The large genus Artemisia has been the object of numerous chemical studies [1]. In continuation of our studies on this topic, we have investigated A. fragrans Willd. [2, 3], a species which grows in Russia, Armenia and neighbouring domains. Previous chemical investigations reported the isolation of several sesquiterpene lactones with germacrane, eudesmane, guaiane and elemane frameworks [4 and references therein]. The structures proposed for shonachalins AD were shown to be totally or partially incorrect and alternative structures proposed [5–8]. For this reason, we became interested in isolating these lactones from the aforementioned species in order to prove our assumptions in a definitive way.

RESULTS AND DISCUSSION

The aerial parts of A. fragrans collected in Armenia gave known germacranolides 1–8 [8], the eudesmanolide taurin [9], and the monoterpenes 9 [5] and 10, the latter being a new compound.

The IR (Experimental) and NMR data (Table 1) of compound 10, $C_{12}H_{20}O_5$, isolated in a very small amount, indicated the presence of a primary hydroxyl and an acetate group. Furthermore, one C=C bond was also present. With the aid of decoupling experiments, the fragments —CH(OR)—CH(C_q)—CH(OR)—CH₂OH, CH₂=C(CH₃) and (CH₃)₂

C—OR were established. These fragments were connected to structure 10 after consideration of the heteronuclear long-range correlations (HMBC). Like 9, compound 10 displays an irregular monoterpene framework of the santolinyl type [10]. An alternative oxetane structure was rejected on the basis of its calculated J values, which were very different from the observed ones. The relative configuration has been proposed on the basis of coupling constant values and NOE measurements. Figure 1 contains a perspective of the optimized geometry of the molecule as calculated by PCMODEL [11].

In the formulae 1–10, we have arbitrarily drawn compound 10 with the same absolute configuration at C-4 as its most likely biosynthetic precursor, the naturally occurring monoterpene (S)-(+)-santolina triene [10]. This compound is widespread in many essential oils, especially in the tribe Anthemideae and in the genus Artemisia [1]. Monoterpene 10, as well as 9, may be biogenetically formed from santolina triene by sequential oxidative modifications of the C=C bonds. A fact which lends support to this biogenetic proposal is the occurrence in other Artemisia species of hydroperoxides formed most likely by enzymatic oxygenation of santolina triene [12]. Metabolites of this type are also common in other members of the tribe Anthemideae [13].

It is noteworthy that the main chemical components of *A. fragrans* found by us are essentially coincident with those of North African *A. herba-alba* [8]. The characteristic 9-oxygenated *trans*-12,6-germacranolides, together with 9-oxygenated *trans*-12,6-eudesmanolides, have been reported within the genus

^{*} Author to whom correspondence should be addressed.

1418 Short Report

only in the latter species and in A. vallesiaca [14]. The results described here and those previously published on a putative A. fragrans [4] differ completely. These differences suggest that the previous investigations

Table 1. H and ¹³C NMR data of monoterpene peroxide 10

Н		C	
1	5.18 br s	1	118.1
	5.08 quint (1.5)	2	139.8
3	4.60 d(7)	3	86.6
4	3.10 dd (7; 3.8)	4	60.4
5	4.31 ddd (8; 3.8; 3)	5	84.2
6	3.77 br dd (12, 8)	6	63.4
	3.57 br d (12)	7	81.6
8/9	1.56 s/1.52 s	8/9	24.1/24.0
10	1,77 br s	10	17.3
OAc	1.95 s (3H)	OAc	170.1/22.2
ОН	2.05 br s		

 $[\]delta$ in ppm and J (parentheses) in Hz.

Fig. 1. Optimized geometry of peroxide 10 (PCMODEL).

may not have actually been performed on A. fragrans but rather on a closely related species. This related species might be, for instance, A. oliveriana [2], which grows in the same geographical zones as A. fragrans (in a recent disclosure, A. fragrans has been considered to be synonymous with A. erivanica (A. fragrans var. erivanica) and A. maritima var. erivanica [15]). This assumption is suggested by the fact that two compounds found by us in A. oliveriana [7] are in all probability identical with shonachalins A and C, two of the sesquiterpene lactones reported to occur in A. fragrans [4].

EXPERIMENTAL

NMR: 400 MHz (1 H) and 100 MHz (13 C) in CDCl₃ (22°). The solvent signals were used as the reference. NOE measurements were carried out by the one-dimensional difference method. OR: 22°. CC: silica gel Merck (particle size 50–200 μ), gradient elution with the solvent mixts indicated in each case. HPLC: LiChrosorb RP-8 (250 × 8 mm), elution with MeOH–H₂O mixts.

Plant material. Aerial parts of A. fragrans were collected in the Ardanish Peninsula, province of Sevan, Armenia, at 2000 m. altitude on 17 August 1995. A voucher specimen (BCF-42121) has been deposited in the herbarium of the Laboratory of Botany, Faculty of Pharmacy, University of Barcelona, Spain (Prof. J. Vallès-Xirau).

Extraction and chromatography. The plant material was processed according to the described protocol [16]. The defatted extract was prefractionated by CC on silica gel (fr. A, hexane–EtOAc 3:1; fr. B, hexane–

Short Report 1419

EtOAc 1:3; fr. C, EtOAc-MeOH 9:1). The three frs were subjected to further chromatographic sepns as described below. The compounds were eluted in the indicated order, which corresponds to increasing polarity on normal-phase silica gel.

From fr. A, after CC on silica gel (elution with hexane–tBuOMe 1:1 $\rightarrow t$ BuOMe) and, where necessary, prep. TLC, the following compounds were isolated: taurin (9 mg), 1 (263 mg), 9 (157 mg), 10 (4 mg), 4 (18 mg), 2 (34 mg) and 5 (57 mg).

CC of fr. B (CH₂Cl₂-EtOAc 12:1 \rightarrow EtOAc), followed where necessary by prep. TLC, allowed the isolation of 1 (27 mg), 4 (54 mg), 2 (100 mg), 6 (295 mg), 5 (410 mg), 3 (7 mg) and 8 (13 mg).

Fr. C (CC with CH₂Cl₂–EtOAc–MeOH 20:5:1 \rightarrow 5:5:1 \rightarrow EtOAc–MeOH 5:1), followed where necessary by prep. TLC and/or HPLC afforded **5** (113 mg), **7** (48 mg) and **8** (390 mg).

(3S*,4R*5R*)-3-Hydroxymethyl-4-(1-acetoxyiso-propyl)-5-isopropenyl-1,2-dioxolane (10). Oil, $[\alpha]_D$ -11.5° (CHCl₃; c 0.7); IR v_{max}^{film} cm⁻¹: 3440 (br, OH), 1727 (acetate C=O), 1451, 1376, 1252, 1141, 1032, 732; EIMS (probe) m/z (rel. int.): 203 [M—C₃H₅]⁻ (10), 125 (24), 109 (36), 83 (100), 69 (80), 55 (41); NMR: Table 1.

Acknowledgments—Two of us (J.V.-X. and M.G.) thank the Ministry of Education and Science for financial support (CICYT project PB93-0032). Thanks are also due to Dr J. Jakupovic, TU Berlin, for helpful comments, and to Dr E. Gabrielian, Botanical Institute, Armenian Academy of Sciences, for his help in plant collection.

REFERENCES

1. Marco, J. A. and Barberá, O., in Studies in Natu-

ral Products Chemistry, Vol. 7A, ed. Atta-ur-Rahman. Elsevier, Amsterdam, 1990, pp. 201–264.

- Boissier, E., Flora Orientalis, Vol. 3. H. Georg, Genève, 1875, p. 366.
- Poljakov, P. P., in *Flora URSS*, Vol. 26, ed. B. K. Shishkin and E. Bobrov. Acad. Scient. URSS, Moscow, 1961, p. 576.
- 4. Serkerov, S. V. and Aleskerova, A. N., Khimiya Prirodnikh Soedinenii, 1987, 101.
- 5. Marco, J. A., Phytochemistry, 1989, 28, 3121.
- Sanz, J. F., Marco, J. A., *Phytochemistry*, 1990, 29, 2913.
- Sanz, J. F., Rustaiyan, A., Marco, J. A., Phytochemistry, 1990, 29, 2919.
- Marco, J. A., Sanz-Cervera, J. F., Ocete, G., Carda, M., Rodríguez, S. and Vallès-Xirau, J., Journal of Natural Products, 1994, 57, 939.
- 9. Serkerov, S. V. and Aleskerova, A. N., Khimiya Prirodnikh Soedinenii, 1981, 564.
- Takano, S., Tanaka, M., Seo, K., Hirama, M. and Ogasawara, K., Journal of Organic Chemistry, 1985, 50, 931.
- 11. PCMODEL, v. 3.2 and 4.0, Serena Software, Bloomington, Indiana, U.S.A.
- Shide, L., Bingmei, N., Wangyu, H. and Jinlun, X., Journal of Natural Products 1991, 54, 573.
- Ahmed, A. A., Jakupovic, J., El-Din, A. A. S. and Melek, F. R., *Phytochemistry*, 1990, 29, 1322.
- 14. Appendino, G., Tagliapietra, S., Nano, G. M. and Cisero, M., *Fitoterapia*, 1993, **64**, 286.
- Gabrielian, E. and Khandjian, N., in Flora Armenii, Vol. 9. ed. A. L. Takhtajan, Koeltz, Koenigstein, 1995, pp. 598-617.
- Marco, J. A., Sanz-Cervera, J. F. and Manglano, E., *Phytochemistry*, 1993, 33, 875.