PII: S0031-9422(97)00681-X

A LIGNAN FROM PIPER CHABA STEMS†

S. P. S. BHANDARI,* U. V. BABU and (Late) H. S. GARG

Medicinal Chemistry Division, Central Drug Research Institute, Lucknow 226 001, India

(Received in revised form 5 June 1997)

Key Word Index—Piper chaba; Piperaceae; lignan.

Abstract—A new lignan, epimers of [8R,8'R]-9-hydroxy,3,4-dimethoxy,3',4'-methylene dioxy-9,9' epoxy lignan, was isolated from the chloroform-soluble fraction of a crude alcoholic extract of *Piper chaba*. Its proposed structure was established from NMR and mass spectral evidences. © 1998 Elsevier Science Ltd. All rights reserved

INTRODUCTION

Earlier work [1, 2] on the aerial parts of *Piper chaba* resulted in the isolation of piperine, sylvatine, piperlonguminine, β -sitosterol and an alkaloid, piplartine. A recent review [3] on the biological activities of lignans of common occurrence in the genus *Piper*, prompted us to look for the presence of lignans/neolignans in *P. chaba*. We report herein, the isolation and structural elucidation of a new lignan from the aerial parts of *P. chaba*.

RESULTS AND DISCUSSION

The IR spectrum of 1 showed absorption bands at 3400, 1032 cm⁻¹ (hydroxyl), 1610, 1450 cm⁻¹ (aromatic) and 930 cm⁻¹ (methylenedioxy). It analyzed for $C_{2!}H_{24}O_6$ (E1 mass spectrum m/z 372 [M]⁺). The ¹H and ¹³C NMR spectra (Tables 1 and 2) of 1 indicated that the compound was a dibenzyl butyrolactol [4-7]. The ¹H NMR spectrum (Table 1) showed an ABX-pattern of aromatic proton signals (δ 6.43- δ 6.77), two sharp singlets (δ 3.82, 3.83) due to aryl methoxyl groups and a broad singlet (δ 5.94) for a methylene dioxy group, revealing the presence of 1,3,4 trisubstituted phenyl systems, as in the case of cubebin [6]. The ¹H NMR spectrum further showed two sets of carbinol protons, due to epimers at δ 3.57 and 4.11, and δ 3.76 and 4.01, and a hemiacetal proton at δ 5.23, revealing the presence of a lactol ring system. This was further supported by ¹³C NMR chemical shifts [8, 9] at δ 42.8 (45.9), 52.1 (53.1), 72.6 (72.2) and 98.8 (103.6).

Careful comparison of the ¹³C NMR spectral data

Table 1. ¹H NMR spectral data of compound 1 in CDCl₃ (TMS)

	` ,	
n	α[1a]	β[1b]
Proton	$\delta H (J = Hz)$	$\delta H (J = Hz)$
H-2	6.43 (d, J = 1.5)	6.43 (d, J = 1.5)
H-5	6.70 (d, J = 7.8)	6.70 (d, J = 7.8)
H-6	6.49 (dd, J = 7.8, 1.5)	6.49 (dd, J = 7.8, 1.5)
H_2-7	$2.61-2.78 \ (m)$	2.47-2.65 (m)
H-8	1.97(m)	2.15(m)
H-9	5.23 (m)	5.23 (m)
H-2'	6.44 (d, J = 1.8)	6.44 (d, J = 1.8)
H-5'	6.77 (d, J = 8.2)	6.77 (d, J = 8.2)
H-6'	$6.51 \ (dd, J = 8.2, 1.8)$	6.51 (dd, J = 8.2, 1.8)
H_2-7'	2.67-2.80 (m)	2.45-2.65 (m)
H-8'	2.43 (m)	2.18(m)
H_2-9'	4.11 (t, J = 8)	4.01 (dd, J = 7.0, 8.5)
	3.57 (t, J = 8)	3.76(m)
OMe	3.82(s)	3.83(s)
OCH ₂ -O	5.94 (br s)	5.94 (br s)

of the aromatic carbon resonances of 1 are in good agreement with those reported [9, 12] for 1,3,4 trisubstituted phenyl systems possessing methylenedioxy and dimethoxyl groups in two different ring systems.

Thus, correlating all the spectral evidence from ¹H, ¹³C NMR and ¹H–¹H COSY spectra, the structure of 1 could be deduced as 9-hydroxy-3,5-dimethoxy,3'-4' methylenedioxy-9,9'-epoxy lignan.

The main chemical-shift differences between the carbon resonances of the two epimers were observed at δ 98.8 and 33.6 (1a), and at δ 103.6 and 39.1 (1b), whereas the corresponding proton signals were observed at δ 3.57 and 4.11 (1a), and 3.76 and 4.01 (1b). Several lignans with lactol rings have been reported previously as mixtures of epimers in solution [4, 5].

[†] CDRI Communication No. 5639.

^{*} Author to whom correspondence should be addressed.

1436 Short Report

Table 2. ¹³C NMR spectral data of compound 1 in CDCl₃ (TMS)

Carbon	α-isomer (1a)	DEPT	β -isomer (1b)
1	132.9	С	132.7
2	111.8	CH	111.7
3	148.8	C	148.7
4	147.7	C	147.3
5	111.3	CH	111.2
6	120.5	CH	120.9
7	33.6	CH_2	39.1
8	52.1	CH	53.1
9	98.8	CH	103.6
1'	133.3	C	134.5
2'	109.3	CH	109.1
3'	147.5	C	147.2
4'	145.7	C	145.5
5'	108.1	CH	108.0
6'	121.7	CH	121.6
7′	38.7	CH_2	38.4
8'	42.8	CH	45.9
9′	72.6	CH_2	72.2
OCH_3	55.8	CH ₃	55.8
OCH,	55.7	CH ₃	55.7
OCH ₂ O	100.8	CH_2	100.8

The stereochemistry at the chiral centres (8,8') and the orientation of the hydroxyl group at C-9 could be established from coupling constants and 13 C NMR chemical shifts. The upfield shift of C-7 ($-\delta$ 5.50) and C-9 ($-\delta$ 4.8) in the major isomer, in comparison with the β -isomer (minor), could only be explained by the α -configuration [8] of the hydroxyl group at C-9. The appearance of envelopes of benzylic protons at δ 2.45–2.80 and methine protons at δ 1.97–2.43, arises only when the stereochemistry at C-8, C-8' is *trans* [9], whereas for the *cis*-isomer [10], these protons generally appear as multiplet at δ 12.1–3.3. Non-equivalence of H-9' protons also supported the *trans*-configuration [9, 11] in both isomers of 1.

The ¹H, ¹³C spectral data and ¹H–¹H COSY analysis were in full agreement with 1 being a mixture of α -and β -isomers. Thus, the α -isomer (1a) and β -isomer (1b) were unambiguously assigned as [8R,8'R]- 9α -hydroxy-3,4-dimethoxy-3',4'-methylenedioxy 9,9'-epoxy lignan and [8R,8'R]- 9β -hydroxy-3,4-dimethoxy-3',4'-methylenedioxy-9,9'-epoxy lignan, respectively.

EXPERIMENTAL

MS were recorded at 70 eV. ¹H and ¹³C NMR were recorded on a Bruker WM 400 MHz and ¹H–¹H COSY on Bruker DRX-300 MHz equipped with an aspect 2000 computer. CC: silica gel (60–120 mesh).

Flash CC: EF-10 (EYELA) A.S.C. silica-gel (230–400 mesh) (SISCO).

Plant material

Stem parts of *P. chaba* Hunter (11.5 kg) were collected from Hooghly, West Bengal, India, in 1994. A voucher specimen (12361) is deposited in the herbarium of the Institute.

Extraction and isolation

Dried and powdered stems were extracted with EtOH $(2 \times 2.5 \text{ l})$. The EtOH extracts were combined and concd in vacuo to give a crude extract (87 g). This was fractionated into hexane- and CHCl₃-sol. The CHCl₃-sol frs. fr. was chromatographed using hexane, hexane-benzene, benzene and EtOAc solvent systems. Frs (100 ml each) eluted with EtOAc were combined after monitoring by TLC [silica gel; benzene-MeOH, 24:1 to give a lignan-containing fr. LA-1. Repeated flash CC of fr. LA-1, followed by semi-prep. HPLC on ODS-2, MeOH-H₂O (9:1), afforded 1 (20 mg) as a viscous oil. IR (neat) max: 3400 cm⁻¹, 2935, 1610, 1515, 1450, 1270, 1032, 930 cm⁻¹. EIMS (70 eV); m/z372 [M]⁺, 354 [M-H₂O]⁺, 219, 194, 177, 151 (ion-a), 135 (ion-b), 121, 84 (base peak). ¹H and ¹³C NMR: Tables 1 and 2, respectively.

Acknowledgements—Thanks are due to the staff, RSIC for spectral data and the Director, CDRI, for encouragement.

REFERENCES

- 1. Patra, A. and Ghosh, A., *Phytochemistry*, 1974, 13, 2889.
- Mishra, S. S. and Tewari, J. P., J. Pharm. Sci., 1964, 53, 1423.
- 3. Jensen, S., Hauson, J. and Boll, P. M., *Phytochemistry*, 1993, **33**, 523.
- 4. Brown, E. and Dallgan, A., Tetrahedron, 1989, 45, 141.
- Prabhu, B. R. and Mulchandani, N. B., Phytochemistry, 1985, 24, 329.
- Kaul, S. K., Taneja, S. C., Pushpangadam, P. and Dhar, K. L., *Phytochemistry*, 1988, 27, 1479.
- 7. Achenbach, H., Waibel, R. and Addae-Mensah, I., *Phytochemistry*, 1983, **22**, 749.
- Barrero, A. F., Haidour, A. and Dorado, M. M., J. Nat. Prod., 1994, 6, 713.
- Kaul, S. K., Taneja. S. C., Dhar, K. L. and Atal, C. K., Phytochemistry, 1983, 22, 999.
- Burden, R. S., Crombie, L. and Whiting, D. A., J. Chem. Soc. (C), 1969. 6, 693.
- 11. Lopes, L., M.X., Yoshida, M. and Gottlieb, O. R., *Phytochemistry*, 1983, **22**, 1516.
- 12. Hiroko, S., Yutaka, S. and Motomu Oohara, *Phytochemistry*, 1988, **27**, 634.