

PII: S0031-9422(97)01112-6

ANTIHISTAMINIC FLAVONES AND ALIPHATIC GLYCOSIDES FROM MENTHA SPICATA

SATOSHI YAMAMURA, KOICHIRO OZAWA, KAZUHIRO OHTANI, RYOJI KASAI and KAZUO YAMASAKI*

Institute of Pharmaceutical Sciences, Hiroshima University School of Medicine, 1-2-3 Kasumi, Minami-ku, Hiroshima 734 Japan

(Received in revised form 14 November 1997)

Key Word Index—*Mentha spicata*; Labiatae; flavonoids; aliphatic glucosides; antiallergic; exocytosis inhibitor.

Abstract—The ethyl acetate soluble portion of the methanol extract of *Mentha spicata* var. *crispa* showed inhibitory activity on exocytosis in antigen-stimulated rat basophils. The bioassay-guided separation of the components of this fraction afforded 13 compounds. The chemical structures were elucidated to be four known flavonoids, three new and five known glucosides of lower alcohols and rosmarinic acid by means of chemical and spectroscopic evidences. Among them, three compounds showed biological activity. From the non-active 1-butanol soluble portion of the methanol extract, four new and two known structurally related glycosides were isolated and characterized. © 1998 Published by Elsevier Science Ltd. All rights reserved

INTRODUCTION

Mentha spicata L. var. crispa Benth. is cultivated as an aromatic plant. Although many terpenoids and flavonoids have been isolated from plants of this genus, few studies have been focused on their biological activity as anti-histaminic agents. This paper deals with the isolation and characterization of the constituents of this species by bioassay guided fractionation.

RESULTS AND DISCUSSION

The methanol extract of the dried leaves of *M. spicata* var. *crispa* was suspended in water, then successively partitioned with hexane, ethyl acetate and 1-butanol. Each fraction was bioassayed for inhibitory activity of exocytosis of rat basophils caused by antigen-induced stimulation. This assay is used to detect promising antiallergic reagents for type I [1]. Significant activity was observed for the ethyl acetate fraction, which was subjected to repeated silica gel and RP-18 column chromatography (CC) and preparative high-performance liquid chromatography (HPLC) to obtain 13 compounds (1-5, 7-10 and 15-18). From the biologically non-active 1-butanol fraction, six compounds (6, 11-14 and 19) were isolated.

Compounds 1-4 were identified as 5-desmeth-

flavone (thymonin) [3] and 5,3',4'-trihydroxy-6,7,8-trimethoxyflavone (sideritiflavone) [2], respectively from the spectroscopic data and in agreement with those in the literature.

Compounds 5, 7 and 8 were mono- β -glucosides

oxynobiletin [2], 5,6-dihydroxy-7,8,3',4'-tetrameth-oxyflavone [2], 5,6,4'-trihydroxy-7,8,3'-trimethoxy-

Compounds 5, 7 and 8 were mono- β -glucosides based on their ¹H and ¹³C NMR spectral data (Table 1). These compounds were hydrolyzed with β -glucosidase to afford the aglycones, which were identified as 1-octen-3-ol (matsutake alcohol) [4], 3-octanol and (Z)-3-hexenyl alcohol [5], respectively. The configuration of 5 was suggested to be 3R-form by comparing the spectral data in the literature [4]. The configuration of 7 was suggested to be in the 3S-form by comparing the ¹³C NMR data of the glucosides with their corresponding aglycone, taking the glucosylation shift tendency into consideration [6]. From these results, 5, 7 and 8 were identified as (3R)-1-octan-3-yl β -D-glucopyranoside, (3S)-octen-3-yl β -D-glucopyranoside, respectively.

Compound 6 had the molecular formula $C_{16}H_{34}O_{10}$. Its ^{13}C and ^{1}H NMR spectra showed signals for 5 and an additional pentose. The ^{13}C NMR signals of the sugar moiety suggested substitution at C-6 of the glucosyl unit, and the total sugar signals were superimposable with those of primeveroside [β -D-xylopyranosyl-(1 \rightarrow 6)- β -D-glucopyranoside] reported in the literature [7]. Therefore, the structure of 6 was determined as (3R)-1-octen-3-yl β -D-primeveroside.

Compound 9 had the molecular formula C₁₆H₂₆O₆.

^{*} Author to whom correspondence should be addressed.

Its ¹³C and ¹H NMR spectra showed signals for carveol β -D-glucopyranoside [8]. The configuration of 9 at C-6 was decided to be S based on comparison of the glucosylation shift of 9 with its aglycone, which was obtained by enzymatic hydrolysis of 9 with β -glucosidase. The optical rotation of the aglycone of 9 was determined to be $[\alpha]_D - 260$, which was compared with an authentic sample. From the result, the absolute structure of 9 was identified to be (4R, 6S) carveol β -D-glucopyranoside.

The NMR spectra of 10 were similar to that of 9. In the same manner as 9, the structure of 10 was decided to be (4R, 6R) carveol β -D-glucopyranoside.

Compounds 11-13 had 16 signals including those

The NMR spectra of 12 were similar to those of 11, but instead of the methyl and hydroxylated tertiary carbon signals, an exomethylene system was revealed. Accordingly the structure of 12 was decided as shown.

Similarly, since the NMR of 13 had a methylene signal instead of the carbonyl in 11, the structure was decided as shown. The aglycone (or its diastereomer) was first isolated from human urine [9].

These glucosides, 11–13 were isolated for the first time, however, their absolute configurations could not be clarified because of the small amounts.

Compounds 14 and 15 were obtained as oil, and identified as benzylalcohol β -D-glucoside and phenethyl alcohol β -D-glucoside, respectively, by comparison of their spectral and physical data with those in the literatures [7, 10].

Compound 16 had a molecular formula of $C_{15}H_{20}O_7$. The ¹³C and ¹H NMR spectra of 16 showed the presence of a 1,2,4-trisubstituted (two oxygen substituted) aromatic ring, an exomethylene and a glucose moiety. Based on these data, 16 was assumed to be an allylcatechol glucoside. In the NOE experiment, cross peaks were observed (i) between an anomeric proton and H-5, and (ii) between H-7 and aromatic protons, H-2 and H-6, which confirmed the location of the allyl moiety and the structure of 16 was determined as 3,4-dihydroxylallylbenzene 4-O- β -D-glucoside.

Compound 17 was a dimeric phenylpropanoid and

was identified as rosmarinic acid, which is widely distributed in the Boraginaceae and Labiatae. This compound was reported to have anti-histaminic activity on rat peritoneal mast cells [11].

Compound 19 exhibited a quasi-molecular ion peak $[M-H]^-$ at m/z 387 in FAB MS measured in negative ion mode which corresponds to the molecular formula $C_{10}H_{12}O_8$. The ¹³C and ¹H NMR spectra of 19 showed a double bond, a ketone group, two hydroxyl groups and a glucose moiety. The data suggested a megastigmane skeleton. The chemical shifts of the carbon signals and the optical rotation and CD data of 19 were identical with those of icariside B_5 [12]. Compound 19 was determined to be icariside B_5 as shown.

Compound 18 had a molecular formula of $C_{17}H_{26}O_7$. The ¹³C and ¹H NMR spectra revealed the presence of a ketone group, a hydroxyl group, a *cis* double bond, a tetra-substituted double bond and a glucose moiety. The HMBC experiment showed correlations between the H-5 signal and the C-3, C-4, C-6, C-7 and C-10 signals. Also correlations were observed between the C-6 signal and the H-5, H-8, H-9 and H-11 signals. On enzymic hydrolysis with β -glucosidase, 18 gave an aglycone, 18a, and a sugar

Table 1. 13C NMR data of	of linear aliphatic alcohol	glycosides (5-8 and 1	8) and the aglycone 18a
Table L. Christin data (n ilicai aliphanic alconoi	grycosiacs (5-to and i	o) and the agreeme roa

С	5 CD ₃ OD	6 CD ₃ OD	7 CD ₃ OD	8 DMSO	18 CD ₃ OD	18a CD₃OD
1	141.0	140.9	10.0	68.1	14.4	13.9
2	116.0	116.2	28.6	27.5	21.5	21.5
3	82.8	82.7	81.9	132.9	133.7	133.7
4	33.0	33.0	33.3	125.1	125.4	125.5
5	25.6	25.7	25.7	20.8	21.7	21.8
6	35.6	35.7	34.4	14.2	142.1	141.2
7	23.6	23.6	23.6		207.8	207.8
8	14.4	14.4	14.4		44.3	45.0
9					80.8	72.0
10					170.1	172.3
11					14.5	14.5
Gle 1	103.2	103.3	103.5	102.8	105.7	
2	75.3	75.3	75.3	73.4	75.2	
3	78.2	78.1	77.7	76.8	78.1	
4	71.6	71.2	71.8	70.1	71.5	
5	77.8	77.6	78.2	76.9	78.0	
6	62.8	69.5	62.9	61.1	62.7	
Xyl 1		105.3				
2		74.9				
3		77.0				
4		71.5				
5		66.8				

Table 2. ¹³C NMR data of monoterpene glucosides (9-13)

	9	10	11	12	13
C	C_5D_5N	C_5D_5N	CD ₃ OD	CD ₃ OD	CD ₃ OD
1	149.6	149.3	135.9	136.1	134.8
2	125.4	124.5	147.8	147.4	121.7
3	31.4	31.4	28.7	32.6	32.0
4	36.1	41.0	42.8	43.9	41.5
5	36.0	34.8	39.6	39.3	24.1
6	78.5	76.3	203.1	202.2	28.1
7	21.4	20.4	15.6	15.7	19.5
8	134.1	136.1	73.8	148.8	78.0
9	109.1	109.3	76.2	113.4	75.1
10	20.9	20.0	20.6	71.6	23.6
Glc 1	106.7	102.0	104.8	103.2	105.1
2	75.5	75.3	75.2	75.1	75.3
3	78.1	78.6	77.9	78.2	77.1
4	71.9	72.2	71.6	71.7	71.7
5	78.1	78.4	78.0	78.0	77.9
6	63.1	63.2	62.7	62.8	62.8

which was identified as β -D-glucopyranose. The configuration at C-9 was deduced to be S form by comparison of the glucosylation shift (¹³C NMR) of **18** with its aglycone (**18a**).

Each compound was bioassayed for inhibitory activity of exocytosis of rat basophils caused by antigen-induced stimulation [13]. Compound 3 showed strong activity (IC₅₀ = 6.4 μ M), while 2 showed mild activity (IC₅₀ = 56 μ M) and 5 showed weaker activity

 $(IC_{50} = 560 \mu M)$. From the data, in case of the flavonoids, the catechol structure in B-ring is necessary to exhibit activity. The substitution pattern in the A-ring seems to have only little influence on the allergic activity of the flavonoids. This tendency is consistent with the previously reported observation [14, 15].

As far as we know, it is the first time that glucosides of volatile compounds have been found to have anti-histaminic activity.

EXPERIMENTAL

General

Mps: uncorr.; ¹H NMR and ¹³C NMR (TMS as int. standard): 400 and 100 MHz, respectively; FAB-MS: negative mode.

Measurement of hexosaminidase release

The secretion of β -hexosaminidase was measured as reported previously [13].

Plant material

Leaves of *Mentha spicata* L. var. *crispa* Benth. were collected in Minami-ku, Hiroshima, Japan during June 1994. A voucher specimen is deposited in the Herbarium of Institute of Pharmaceutical Sciences, Hiroshima University School of Medicine.

Extraction and isolation

Dried leaves (350 g) of M. spicata were extracted with hot MeOH to give 65 g of extract, a part (64 g) of which was dissolved in H₂O and then extracted with hexane, EtOAc, and n-BuOH, successively, to give 18 g, 7.4 g, 15 g of the respective extracts, and the remaining aq. portion (23 g). The bioactivity of each of these frs was measured at a concentration of 1mg/ml soln and found to be 100, 100, 13 and 0%, respectively. The portion of the most active fr. (EtOAc) was separated by silica gel CC using CH₂Cl₂-MeOH (30:1-5:1), CH₂Cl₂-MeOH-H₂O (15:6:1)and MeOH to give 8 frs (E-1 to E-8). The weights (mg) and activities (%) at 1 mg/ml and 100 μ g/ml of E-1 to E-8 were: 67 (0 and 0), 95 (92 and 36), 490 (99 and 31), 630 (85 and 95), 1400 (98 and 51), 620 (98 and 61), 1400 (87 and 0) and 1800 (85 and 0), respectively. E-2 was fractionated on HPLC (ODS) using MeOH-H₂O (4:1) to yield 1 (12 mg). E-3 and E-4 overlapped on TLC, so these were mixed and further fractionated on HPLC(ODS) using MeOH-H₂O (3:2) to yield 2 (154 mg), 3 (130 mg) and 4 (51 mg). E-5 was further fractionated by silica gel CC using hexane-EtOAc (1:2), EtOAc-MeOH (20:1 to 1:1) and MeOH to give 6 frs (5-1 to 5-6). The weights (mg) and activities (%) at 1 mg/ml of 5-1 to 5-6 were: 46 (90), 490 (95), 300 (0), 230 (62), 150 (98) and 160 (100), respectively. Fr. 5-2 was fractionated on a column of ODS using MeOH-H₂O (3:2), and successively purified on HPLC (ODS) using MeOH-H₂O (2:3 and 1:1) to yield 5 (57.2 mg), 7 (12.8 mg), 8 (19.6 mg), 9 (57.1 mg), **10** (26.4 mg), **15** (22.3 mg), **16** (41.3 mg) and 18 (12.8 mg). From frs E-6, E-7 and E-8, 17 (210 mg) was obtained.

The *n*-BuOH extract was separated by silica gel CC using CH₂Cl₂-MeOH (5:1), CH₂Cl₂-MeOH-H₂O (15:6:1 and 6:4:1) and then MeOH to give 4 frs (B-1 to B-4). Fr. B-2 (0.69 g) was further chro-

matographed on a column of silica gel using EtOAc-MeOH (10:1-2:1) and MeOH to give 5 frs (B-2-1 to B-2-5). Fr. B-2-1 (470 mg) was fractionated on a column of ODS using MeOH-H₂O (1:19-1:1), and successively purified on HPLC (ODS) using MeOH-H₂O (3:17 and 3:7) and using CH₃CN-H₂O (1:9 and 3:17) to yield 12 (8.8 mg) and 14 (8.0 mg). Fr. B-2-2 (450 mg) was fractionated on a column of ODS using MeOH-H₂O (1:9-3:2), and successively purified on HPLC (ODS) using MeOH-H₂O (1:4 and 1:1) and using CH₃CN-H₂O (3:17 and 3:7) to yield 6 (7.3 mg), 13 (6.8 mg) and 19 (5.6 mg). Fr. B-2-3 (220 mg) was purified on HPLC (ODS) using MeOH-H₂O (3:7) to yield 11 (28.4 mg).

3-O-β-D-Glucopyranosyl (3R)-1-octen-3-ol (5). ¹³C NMR: Table 1, ¹H NMR (CD₃OD): δ 5.19 (d, J = 16.6 Hz, H-1), 5.08 (d, J = 10.5 Hz, H-1), 5.87 (ddd, J = 16.6, 10.5, 5.9 Hz, H-2), 4.11 (dt, J = 5.9, 5.9 Hz, H-3), 1.68 (m, H-4a), 1.52 (m, H-4b), 1.31 (m, 6H, H-5-7), 0.89 (t, 3H, J = 6.8 Hz, H-8), 4.31 (d, J = 7.8 Hz, H-1'). FAB-MS (Neg.) m/z: 289 [M-H]⁻, [α]²D¹ + 10.0° (MeOH; c 0.52).

3-O-[β-D-*Xylopyranosyl*-(1-6)-β-D-*glucopyranosyl*] (3R)-1-*octen*-3-*ol* (6). ¹³C NMR: Table 1, ¹H NMR (CD₃OD): δ 5.10 (*ddd*, J = 1.2, 1.7, 17.3 Hz, H-1), 5.21 (*ddd*, J = 1.2, 1.7, 10.5 Hz, H-1), 5.86 (*ddd*, J = 6.8, 10.5, 17.3 Hz, H-2), 4.13 (*dd*, J = 6.8, 12.8 Hz, H-3), 1.31 (*m*, H-4), 1.52 (*m*, H-4), 1.66 (*m*, H-5, 6, 7), 0.89 (*t*, J = 6.8 Hz, H-8), 4.33 (*d*, J = 7.3 Hz, H-1'), 4.31 (*d*, J = 7.8 Hz, H-1"), HR-FAB-MS m/z 421.2114 [M-H]⁻, $C_{19}H_{33}O_{10}$ requires 421.2074, [α]_D²¹ -60° (MeOH; *c* 0.13).

3-O-β-D-Glucopyranosyl (3S)-3-octanol (7). ¹³C NMR: Table 1, ¹H NMR (CD₃OD): δ 0.91 (t, J = 7.3 Hz, H-1), 1.58 (qd, J = 7.3, 5.9 Hz, H-2), 3.64 (tt, J = 5.9, 6.4 Hz, H-3), 1.25–1.54 (m, H-4-7), 0.90 (t, J = 7.1 Hz, H-8), 4.30 (d, J = 7.8 Hz, H-1'), HR-FAB-MS m/z: 291.183 [M – H]⁻, C₁₄H₂₇O₆ requires 291.1808, [α]_D²¹ – 29° (MeOH; c 0.24).

β-D-Glucopyranosyl (Z)-3-hexenol (8). ¹³C NMR: Table 1, ¹H NMR (CD₃OD): δ 2.37 (q, J = 6.8 Hz, H-2), 5.38 (m, H-3), 5.43 (m, H-4), 2.07 (quin, J = 7.1 Hz, H-5), 0.96 (t, J = 7.6 Hz, H-6), 4.26 (d, J = 7.8 Hz, H-1'), FAB-MS (Neg.) m/z: 261 [M – H]⁻, [α]²¹ – 30° (EtOH; c 0.17).

(4*R*, 6*S*)-Carveol β-D-glucoside (9). ¹³C NMR: Table 2, ¹H NMR (C_5D_5N): δ 4.16 (m, H-2), 1.56 (m, H-3), 2.58 (m, H-3), 2.54 (m, H-4), 1.81 (m, H-5), 2.09 (m, H-5), 5.52 (br d, J = 4.4 Hz, H-6), 1.97 (s, H-7), 4.70 (s, H-9), 1.64 (s, H-10), 4.95 (d, J = 7.5, H-1′), FAB-MS (Neg.) m/z: 313 [M – H]⁻, [α]_D²¹ – 87.7° (MeOH: c 0.84).

(4*R*, 6*R*)-Carveol β-D-glucoside (10). ¹³C NMR: Table 2, ¹H NMR (C_5D_5N): δ 4.17 (dd, J = 9.3, 8.8 Hz, H-2), 1.67 (ddd, J = 9.3, 12.2, 11.2 Hz, H-3), 2.43 (ddd, J = 8.8, 11.2, 12.2 Hz, H-3), 2.16 (tt, J = 11.2, 12.2 Hz, H-4), 1.89 (m, H-5), 1.95 (m, H-5), 5.48 (br d, J = 3.4 Hz, H-6), 1.91 (s, H-7), 4.72 (m, H-9), 1.61 (s, H-10), 4.97 (d, J = 7.8 Hz, H-1'), FAB-MS (Neg.) m/z: 313 [M - H]⁻, [α]₂¹ - 40° (MeOH; c 0.35).

Compound 11. ¹³C NMR: Table 2, ¹H NMR (CD₃OD): δ 1.11 (s, H-10), 1.78 (t, J = 1.2 Hz, H-7), 6.85 (m, H-2), 4.26 (d, J = 7.8 Hz, H-1′), 3.94 (d. J = 10.3 Hz, H-9), 3.38 (d, J = 10.3 Hz, H-9), 2.61 (dt, J = 14.6, 2.2 Hz, H-5), 2.44 (m, H-3), 2.32 (d. J = 14.6 Hz, H-5), 2.37 (m, H-4), 2.22 (m. H-3), HR-FAB-MS m/z: 345.154 [m-H] $^-$, $C_{16}H_{25}O_8$ requires 345.155, [α] $_D^{21}$ -7.3° (MeOH; c 0.55).

Compound 12. ¹³C NMR: Table 2, ¹H NMR (CD₃OD): δ 6.86 (m, H-2), 2.61 (m, H-3), 2.35 (ddq, J = 10.5, 18.5, 2.7 Hz, H-3), 2.93 (m, H-4), 2.58 (ddd, J = 1.5, 4.2, 16.1 Hz, H-5), 2.47 (dd, J = 12.7, 16.3 Hz, H-5), 1.74 (quin, J = 1.2 Hz, H-7), 5.20 (s, H-9), 5.01 (s, H-9), 4.41 (d, J = 12.4 Hz, H-10), 4.16 (d, J = 12.4 Hz, H-10), 4.26 (d, J = 7.8 Hz, H-1'), HR-FAB-MS m/z: 327.141 [M - H] $^-$, $C_{16}H_{23}O_7$ requires 327.1376, [α] $_D^{21}$ - 68° (MeOH; c 0.18).

Uroterpenol β -D-glucoside (13). ¹³C NMR: Table 2, ¹H NMR (CD₃OD): δ 1.03 (s, H-10). 1.28 (m, H-4), 1.62 (s, H-7), 1.77 (m, H-6), 2.00 (m, H-3, 5), 3.94 (d, J = 10.0 Hz, H-9), 3.30 (d, J = 10.0 Hz, H-9), 4.25 (d, J = 7.8 Hz, H-1'), 5.34 (m, H-2), FAB-MS (Neg.) m/z: 331 [M - H] $^-$, [α] $_D^{2,1}$ - 38° (MeOH; c 0.13).

3,4-Dihydroxyallylbenzene-3-O-β-D-glucoside (16).
¹³C NMR (C₅D₅N): δ 136.7 (C-1), 115.6 (C-2), 145.1 (C-3), 149.7 (C-4), 119.9 (C-5), 120.3 (C-6), 39.9 (C-7), 117.6 (C-8), 138.2 (C-9), 105.5 (C-1'), 79.1 (C-2'), 78.3 (C-3'), 75.0 (C-4'), 71.2 (C-5'), 62.3 (C-6'), ¹H NMR (C₅D₅N): δ 7.46 (d, J = 8.1 Hz, H-5), 7.12 (d, J = 2.2 Hz, H-2), 6.66 (dd, J = 2.2, 8.1 Hz, H-6), 5.96 (m, H-8), 5.06 (ddd, J = 17.1, 3.4, 1.5 Hz, H-9), 5.01 (ddd, J = 9.0, 3.4, 1.5 Hz, H-9), 3.28 (d, J = 6.8 Hz, H-7), 5.38 (d, J = 7.6 Hz, Glc-1), HR-FAB-MS m/z: 311.1082 [M-H]⁻, C₁₅H₁₉O₇ requires 311.1131, [α]_D²¹ -52.6° (MeOH; c 0.23).

Compound 18. ¹³C NMR: Table 1, ¹H NMR (CD₃OD): δ 0.98 (t, J = 7.6 Hz, H-1), 2.15 (ddd. J = 1.5, 7.3, 7.6 Hz, H-2), 5.38 (dtt, J = 17.8, 7.6, 1.5 Hz, H-3), 5.20 (dtt, J = 17.8, 7.3, 1.5 Hz, H-4), 2.94 (br d, J = 7.3 Hz, H-5), 2.75 (dd, J = 5.9, 18.8 Hz, H-8), 2.50 (dd, J = 1.5, 18.8 Hz, H-8), 4.69 (br d, J = 5.9 Hz, H-9), 2.15 (s, H-11), 4.46 (s, J = 7.8 Hz, H-1'), HR-FAB-MS m/z: 341.1609 [M-H]⁻⁻, C₁₇H₂₈O₅ requires 341.1600, [α]_D²¹ -25° (MeOH; c 0.24).

Aglycone of **18** (**18a**). ¹³C NMR: Table 1. ¹H NMR (CD₃OD): δ 0.97 (t, J = 7.6 Hz, H-1), 2.15 (ddd, J = 1.5, 7.3, 7.6 Hz, H-2), 5.36 (dtt, J = 17.8, 7.6, 1.5 Hz, H-3), 5.23 (dtt, J = 17.8, 7.3, 1.5 Hz, H-4), 2.93 (br d, J = 7.3 Hz, H-5), 2.71 (dd, J = 6.1, 18.5 Hz, H-8), 2.18 (overlap, H-8), 4.64 (br d, J = 6.1 Hz, H-9), 2.14 (s, H-11), FAB-MS (Neg.) m/z 179 [M – H]

Icariside B_5 (19) [12]. [α] $_D^{-1} - 20^\circ$ (MeOH; c 0.1), {Ref. [12]: -13° (MeOH; c 0.62)}, CD (MeOH; c

0.1) [θ] (nm) +32500 (220), +2700 (327), -26,100 (251), {Ref. [12]: +42,800 (218), +5700 (324), -30,800 (250)}.

Acknowledgements—The authors are grateful to Prof. T. Seki of Hiroshima University for the authentication of Mentha spicata. The authors are also grateful to the Research Centre for Molecular Medicine, Hiroshima University School of Medicine, for the use of their facilities.

REFERENCES

- Ozawa, K., Szallasi, Z., Kazanietz, M. G., Blumberg, P. M., Mischak, H., Mushinski, J. F. and Beaven, M. A., J. Biol. Chem., 1993, 268, 1749.
- Jullien, F., Voirin, B., Bernillon, J. and Favre-Bonvin, J., *Phytochemistry*, 1984, 23, 2972.
- 3. Voirin, B., Favre-Bonvin, Indra, V. and Nair, A. G. R., *Phytochemistry*, 1984, **23**, 2973.
- 4. Takano, S., Yanase, M., Takahashi, M. and Ogasawara, K., Chem. Lett., 1987, 2017.
- Kurihara, T. and Kikuchi, M., Yakugaku Zasshi. 1973, 93, 1201.
- Kasai, R., Okihara, M., Asakawa, J., Mizutani, K. and Tanaka, O., *Tetrahedron*, 1979, 35, 1427.
- 7. Watanabe, N., Nakajima, R., Watanabe, S., Moon, J-H., Inagaki, J., Sakata, K., Yagi, A. and Ina, K., *Phytochemistry*, 1994, 37, 457.
- 8. Matsubaram, Y., Sawabe, A., Iizuka, Y. and Okamoto, K., J. Jpn. Oil Chem. Soc., 1988, 37, 13
- Kergomard, A. and Veschambre, H., *Tetrahedron*, 1977, 33, 2215.
- Umehara, K., Hattori, I., Miyase, T., Ueno, A., Hara, S. and Kageyama, C., Chem. Pharm. Bull., 1988, 36, 5004.
- Rimando, A. M., Inoshiri, S., Otsuka, H., Kohda, H., Yamasaki, K., Padolina, W. G., Torres, L., Quintana, E. G. and Cantoria, M. C., Shoyakugaku Zasshi, 1987. 41, 242.
- Miyase, T., Ueno, A., Takizawa, N., Kobayashi, H. and Oguchi, H., *Chem. Pharm. Bull.*, 1988, 36, 2475.
- Yamamura, S., Simpol, L. R., Ozawa, K., Ohtani, K., Otsuka, H., Kasai, R., Yamasaki, K. and Padolina, W. G., *Phytochemistry*, 1995, 39, 105.
- Sankawa, U., Cun, K., Allergic substances from Chinese Medicinal Plants. In *Chinese Medicinal* Material Research, World Science Publ. Co. Singapore, 1985.
- Amellal, M., Bronner, C., Briancon, S., Haag, M., Anton, R. and Landry. Y., *Planta Med.*, 1985, 51, 16.