

PII: S0031-9422(97)00687-0

DITERPENE ACIDS FROM CONYZA INCANA

AHMED M. GALAL, ESSAM ABDEL-SATTAR,* FAROUK S. EL-FERALY, JABER S. MOSSA.

MESELHY R. MESELHY,† SHIGETOSHI KADOTA† and TSUNEO NAMBA†

Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, P.O. Box 2457, Saudi Arabia; †Research Institute for Wakan-Yaku, Toyama Medical and Pharmaceutical University, 2630-Sugitani, Toyama 930-01, Japan

(Received 2 June 1997)

Key Word Index—Conyza incana; Compositae; diterpene acids; ent-labdane; NMR; MS.

Abstract—The aerial parts of *Conyza incana* yielded three new diterpene acids: the two alicyclic furano diterpenes, namely, *E,E* and *E,Z*-incanic acids and an *ent*-labdane succinate ester. The structures of these compounds were elucidated by spectroscopic methods. © 1998 Elsevier Science Ltd. All rights reserved

INTRODUCTION

More than 1200 diterpenes have been identified from approximately 550 Compositae taxa. The genus *Conyza* (tribe Asterae) comprises about 50 species, which are mainly distributed in tropical and subtropical areas. The diterpenes of the genus *Conyza* are mainly of labdane, clerodane, *seco*-clerodane and alicyclic types [1]. *C. incana* Willd was studied for its essential oil by GC/MS [2]. In addition, the flavonoids chrysophenol B and penduletin [3] were isolated from its aerial parts. As a continuation of the photochemical investigation of diterpene-containing plants of Saudi flora, the aerial parts of *C. incana* have been investigated, resulting in the isolation of three diterpenes, which are the subject of this paper.

RESULTS AND DISCUSSION

The CH₂Cl₂ extract of the aerial parts of *C. incana* afforded three diterpenes: the two furano alicyclic acids **1** and **5** and the *ent*-labdane succinate ester **6**. The structure of compound **1** was deduced from its molecular formula $C_{20}H_{26}O_5$ (high resolution MS), fragmentation pattern (see Experimental) and from the ¹H NMR and ¹³C NMR data (Tables 1 and 2). The presence of a β -substituted furan ring followed from the presence of a fragment ion at m/z 81 (C_5H_5O , pyrylium ion) in its EIMS and from the characteristic pattern of the downfield signals in its ¹H NMR spectrum (δ 6.27, 7.24, 7.35) (Table 1). The fast methy-

lation of 1 to 1a using diazomethane indicated the presence of two carboxylic groups (two methoxy groups at δ 3.74 and 3.72 in the ¹H NMR). The ¹H NMR and ¹³C NMR spectra of 1 were consistent with an alicyclic diterpene acid with a terminal furan ring. The structure of 1 and its methyl ester 1a showed close resemblance to those of centipedic acid (2), a diterpene isolated from Centipeda orbicularis [4] and microglossic acid (3), a diterpene acid isolated from Microglossa zeylanica [5]. Also, the unsaturated side chain of 1 appeared to be identical in composition and stereochemistry to the alkyl group on C-3 of oleaxillaric acid (4), a diterpene acid isolated from Olearia axillaris [6]. This fact was ascertained by comparing their relevant proton chemical shift values, which were almost indistiguishable (Table 1). The chemical shift values of H-6 and H-10 (δ 6.99 and 6.89, respectively) clearly indicated an E configuration for both double bonds as in 4 and related compounds with E configurations [5-7]. The name E,E-incanic acid is now used to describe compound 1.

Compound 5 ($C_{20}H_{26}O_5$) showed very similar spectral data (Table 1, 2) to those of 1. The main difference was the upfield shift of H-10 in 1 by 0.99 ppm, which suggested a reversed stereochemistry around the C-10/11 double bond from E in 1 to Z in 5 [6]. This was further confirmed by comparison with compounds having a similar configuration [4, 7–9] and also by noting the deshielded chemical shift value of C-12 (δ 34.53) compared to δ 28.21 in the isomeric compound 1. The relative deshielding of C-12 can be attributed to the lack of steric compression at this position due to the Z configuration around the C-10/11 double bond [10]. Therefore, compound 5 was identified as the E,Z isomer of 1 and is named E,Z-incanic acid.

Compound 6, C24H36O6 (HRMS), was found to

^{*}Author to whom correspondence should be addressed. Present Address: Department of Pharmacognosy, College of Pharmacy, El-Kasr El-Aini Street, Cairo 11562, Egypt.

- 1 R' = R" = COOH, 1a R' = R" = COOCH3
- 2 R' = COOH, R" = H
- 3 R' = R" = COOH, 6,7 dihydro

have a β -substituted butanolide ring as indicated by a positive reaction with Raymond reagent [11], which was further confirmed by the presance of an absorption band at 1775 cm⁻¹ in the IR spectrum. The IR spectrum also showed absorption bands at 3090, 1640 and 890 cm⁻¹, suggesting the presence of an exocyclic methylene group [11], whose presence was further substantiated from the ¹H NMR data (Table 1). The ¹H NMR spectrum of 6 showed signals at δ 5.85 (d, J = 1.3, H-14) and two dd at δ 4.69 and 4.75 (J = 17, 1.3, H-16), which are consistent with the values of a β -substituted butanolide ring [11], similar to that of the steroidal cardenolides [12]. The 'H NMR spectrum of 6 also showed a close resemblance to those of the minor lactone alcohol 7 isolated from Xanthocephalum linearifolium [13] and daniellol succinate (8) isolated from C. welwitschii [14]. The EIMS showed the mass ion at m/z 318 [M-100]⁺ indicating the loss of a succinic acid moiety. The presence of the latter was further confirmed by the multiplet signal at δ 2.63 ('H NMR) assigned for the two CH₂ groups

and the two carboxyl signals at δ 177.63 and 172.2 (¹³C NMR). The presence of the succinyl group at C-19 caused a downfield shift of the respective protons (δ 4.27 and 3.87) relative to those of the alcohol 7 [13] and similar values to those of **8** [14]. The stereochemistry of **6** was ascertained as an *ent*-labdane based on its negative optical rotation [14]. Therefore, compound **6** was identified as the 19-succinate ester of **7**.

EXPERIMENTAL

General. Mps: uncorr.; IR: KBr and neat; 1 H and 13 C NMR were: CDCl₃ using a JEOL GNM-GX400 spectrophotometer (400 and 100 MHz, respectively); HRMS and EIMS: JEOL JMS D-300. [α]_D: at amb. temp.; MPLC: 40 g of RP C18 silica gel (25–40 μ , 2.5 X22.5 cm), flow rate 5 ml/min; TLC: silica gel 60 F₂₅₄, CH₂Cl₂-MeOH (10:1) as solvent system; visualization using *p*-anisaldehyde/H₂SO₄ as spray reagent.

Plant material. The aerial parts of C. incana Willd were collected in Abha, Saudi Arabia in August 1995.

Table 1. H NMR spectral data of the diterpenes isolated from C. incana and oleaoxillaric acid (4)

	1	1a	4	5	5a	6	6a
1	7.35 t	7.35 1	4.58 d	7.36 1	7.38 <i>t</i>	β 1.08 ddd	1.07 ddd
						α 1.80 m	1.80 m
2	6.27 dd	6.26 dd	5.36 br.d	6.27 dd	6.31 dd	1.50-1.52 m	1.50-1.52 n
3	10.000.000000					$1.02 \ m$	1.05 m
						1.78 m	1.76 m
4	2.60 t	2.57 /	2.15 br.t	2.55 t	2.40 t		
5	2,49 br.q	2.45 br.q	2.29 m	2.41 br.q	2.46 br.q	1.25 dd	1.25 dd
6	6.99 t	6.82 <i>t</i>	6.76 <i>i</i>	6.93 /	6.81 1	α 1.36 dq	1.35 dq
		-man eq.				β 1.88 m	1.85 m
7					-	β 1.94 ddd	1.94 m
				MARCO A MINOR		α 2.42 br.d	2.43 ddd
8	2.43 br t	2.42 t	3.41 t	2.44 t	2.57 t	a men	
9	$2.29 \ br.q$	2.26 br.q	2.29 m	2.64 br.g	2.48 br.q	1.65 br.s	1.62 br.s
10	6.89 t	6.67 t	6.71 br.t	5.90 t	5.80 t	Marin .	
11						1.65-1.8 m	1.7–1.8 m
12	2.33 br.t	2.28 t	2.29 m	2.24 t	2.24 t	A 2.26 m	2.25 m
						B 2.56 m	2.55 m
13	$2.08 \ q$	2.05 q	2.05 dt	2.10 q	2.08 q		
14	5.11 <i>i</i>	5.12 <i>t</i>	5.10 br.t	5.08 t	5.10 i	5.85 br.s	5.85 t
16	1.66 br.s	1.66 br.s	1.66 br.s	1.67 br.s	1.70 br.s	A 4.69dd	4.68 dd
						B 4.75 dd	4.75 dd
17	1.58 b. s	1.57 br.s	1.57 br.s	1.57 br.s	1.50 br.s	A 4.47 br.s	4.47 br.s
						B 4.89 br.s	4.88 br.s
18						$0.97 \ s$	0.96 s
19	_	* * ·	1000 1000		******	A 3.87 d	3.87 d
	manage a side					B 4.27 d	4.26 d
20	7.24 br.s	7.23 <i>t</i>	1.71 br.s	7.23 t	7.27 t	$0.70 \ s$	$0.70 \ s$
Succinic aci	d moiety:						
$(CH_2)_2$	-				seement, c	2.63 m	2.62 m
OCH ₃	_	3.74 s		3.74 s	3.73 s		3.7 s
		3.72 s		3.71 s	3.71 s		
OAc		*******	2.04 s			=	

J [Hz]; Compound 1, 1a, 5 and 5a: 4,5 = 5.6 = 8,9 = 9,10 = 12.13 = 13.14 = \sim 7; 1,2 = 1,20 = 1.8; Compound 6 and 6a: 1α, 1β = 1β, 2α = 12.0; 1α, 2α = 1β, 2β = 5; 5, 6α = 12.8; 5, 6β = 1.8; 6α, 7α \sim 4; 6α, 6β = 6α, 7β = 12.5; 6β, 7β = 5; 14.16A = 14.16β \sim 1.3; 16A, 16B = 17.4; 19A, 19B = 11.

A voucher specimen (# 12959) was deposited in the herbarium of the College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.

Isolation procedure. The dried ground aerial parts (1 kg) of C. incana were percolated with CH₂Cl₂ (6 l) at room temp then evaporated to give 63 g of a dark green extract. A portion of the CH₂Cl₂ extract (50 g) was partitioned between MeCN and n-hexane to give 35 g and 9 g, respectively. The MeCN fraction (4 g) was dissolved in EtOAc (75 ml) and extracted with 2% NaHCO₃ soln (3×100 ml). The combined alkaline extracts were adjusted to pH 4 using HOAc and the acidic soln was shaken with EtOAc (3×100 ml). The combined EtOAc extracts were washed with H₂O and filtered on anhydrous Na2SO4 then evaporated under vacuum (1.3 g). In a typical run, the EtOAc extract (500 mg) was subjected to MPLC over RP C18 using MeOH-MeCN-H₂O (5:2:3) as eluent, to afford compound 1 (140 mg, $R_{\rm f}$ 0.36), followed by compound 5 $(73 \text{ mg}, R_{\rm f} 0.47).$

The EtOAc phase left after shaking with NaHCO3

soln, was dried over anhydrous Na₂SO₄ to leave 1.7 g. The residue was subjected to silica gel CC using CH₂Cl₂-MeOH (9.5:0.5) as the solvent system, followed by MLPC rechromatography using RP C18 and MeOH-MeCN-H₂O (2:1:1) as eluent (flow rate 3 ml/min), to give 113 mg of compound 6.

E,E-Incanic acid (1). White amorphous powder, mp $81-83^{\circ}$, $[\alpha]_{\rm D}+6.7^{\circ}$ (c 0.102; MeOH). IR $v_{\rm max}$ (KBr) cm $^{-1}$: 3420 br (COOH), 1670 (CO), 1630, 1425; 1 H and 13 C NMR: Tables 1 and 2; EIMS m/z (rel. int.): 346 [M] $^{+}$ (6), 328 [M-H₂O] $^{+}$ (35), 277 [M-C₅H₉] $^{+}$ (15), 179 [M-C₁₀H₁₅O₂] $^{+}$ (10), 95 [M-C₁₄H₁₉O₄] $^{+}$ (18), 81 [C₅H₅O] $^{+}$ (85) and 69 [C₅H₉] $^{+}$ (100).

E.Z-Incanic acid methyl ester (1a). Colourless oil, $[\alpha]_D + 10.3^{\circ}$ (c 0.07; MeOH). ¹H and ¹³C NMR: Tables 1 and 2; EIMS m/z (rel. int.): 374 [M]⁺ (15), 342 [M–MeOH]⁺ (57), 310 [M–2XMeOH]⁺ (32),229 (41),179 [M–C₁₀H₁₅O₂]⁺ (22), 81 [C₅H₅O]⁺ (100) and 69 [C₅H₉]⁺ (96).

E.Z-Incanic acid (5). Colourless oil, $[\alpha]_D + 8.9^\circ$ (c 0.092; MeOH). IR v_{max} (neat) cm $^{-1}$: 3500 br

Table 2. ¹³C NMR spectral data of diterpenes isolated from C. incana

	1	1a	5	5a	6	6a
1	143.03 d	141.99	142.97	42.93	38.87 t	38.93
2	110.76 d	110.75	110.76	110.81	18.80 t	18.86
3	123.48 s	123.84	123.32	123.45	36.01 t	36.04
4	23.90 t	24.02	24.06	26.90	37.38 s	37.41
5	29.49 t	29.24	29.46	29.03	56.11 d	56.08
6	145.28 d	142.63	144.06	142.39	24.35 t	24.42
7	132.40 s	132.49	131.10	131.88	38.32 t	38.35
8	25.63 t	26.08	25.94	24.08	147.00 s	147.06
9	26.60 t	26.90	28.54	29.09	56.01 d	56.17
10	144.06 d	141.46	141.23	140.51	39.56 s	39.63
11	131.04 s	132.28	133.13	132.28	21.32 t	21.35
12	28.21 t	28.00	34.53	34.70	27.37 t	27.56
13	27.70 t	27.70	27.76	27.70	170.98 s	170.83
14	123.69 d	123.59	123.27	123.38	115.16 d	115.28
15	132.07 s	131.99	132.46	132.28	174.26 s	174.08
16	25.63 q	25.60	25.66	25.70	73.14 t	73.08
17	17.62 q	17.60	17.71	17.61	106.96 t	106.99
18	173.42 s	168.49	174.48	168.34	27.48 q	27.39
19	173.05 s	167.86	173.54	168.04	67.01 t	66.92
20	139.08 d	139.05	139.02	139.05	15.10 q	15.16
Succinic acid	l moiety:					
(CH ₂) ₂				_	28.94 t	29.21
		_	SulfOR Value	PROGRAM	28.94 t	28.94
$\underline{C}OOH$	AND THE RESERVE OF THE PERSON	_			177.63 s	172.72
	(1) Mark 11*	_		****	172.20 s	172.32
CH ₃ O		51.77 q	_	51.74 q		51.83
	AMORE 11	51.70 q	_	51.13 q	_	

6 R =
$$O$$
OH
 $R' = \sqrt{\frac{16}{13}} O$

(COOH),1680 (CO), 1630, 1420; ¹H and ¹³C NMR: Tables 1 and 2; EIMS m/z (rel. int.): 346 [M]⁺ (5), 328 [M-H₂O]⁺ (35), 277 [M-C₅H₉]⁺ (12), 179 [M-C₁₀H₁₅O₂]⁺ (7), 95 [M-C₁₄H₁₉O₄]⁺ (18), 81 [C₅H₅O]⁺ (85) and 69 [C₅H₉]⁺ (100).

E,E-Incanic acid methyl ester (**5a**). Colourless oil, $[\alpha]_D + 8.8^{\circ}$ (c 0.082; MeOH). ¹H and ¹³C NMR: Tables 1 and 2; EIMS m/z (rel. int.): 374 [M]⁺ (5), 342 [M–MeOH]⁺ (28), 310 [M–2XMeOH]⁺ (25), 229 (40),179 [M–C₁₀H₁₅O₂]⁺ (16), 107 (30), 81 [C₅H₅O]⁺ (100) and 69 [C₅H₉]⁺ (96).

Compound 6. Colourless oil, [α]_D – 25.33° (c 0.107; MeOH). IR ν_{max} (neat) cm⁻¹: 3450 br (COOH), 3090, 1640, 890 (exocyclic methylene group), 1775 (^{α,β}butanolide ring); ¹H and ¹³C NMR: Tables 1 and 2; EIMS m/z (rel. int.): 418 [M]⁺ (4), 400 [M–H₂O]⁺ (6), 318 [M–succinate]+(13), 300 [M–H₂O–succinate]⁺ (45), 287 [M–CH₂OCO(CH₂)₂COOH]⁺ (38), 203 (75),135 (86), 119 (57), 98 [C₅H₆O₂]⁺ (100) and 69 (85).

Compound **6a**. Colourless oil, $[\alpha]_D - 26.9^\circ$ (c 0.086; MeOH). ¹H and ¹³C NMR: Tables 1 and 2; EIMS m/z (rel. int.): 432 [M]⁺ (5), 318 [M-methyl succinate]⁺ (4), 300 [M-H₂O-methyl succinate]⁺ (66), 287 [M-CH₂OCO(CH₂)₂ COOCH₃]⁺ (54), 203 (88),135 (99), 115 (100), 98 [C5H6O2]⁺ (92) and 55 (82).

Acknowledgement—The authors thank Dr. Sultan-Ul-Abedin for the identification of plant materials.

REFERENCES

1. Seaman, F., Bohlman, F., Zdero, C. and Mabry, T. J., Diterpenes of Flowering Plants Compositae

- (Asteraceae), Springer-Verlag, New York Inc.,
- El-Hawary, S. S., Mossa, J. S., Al-Yahya, M. A, Al-Meshal, I. A. and Hifnawy, M. S., *Int. J. Pharmacognosy*, 1991, 29, 1888.
- Mossa, J. S., Hifnawy, M. S., Al-Yahya, M. A., Hafez, M. M. and El-Feraly, F. S., *Int. J. Crude Drug Res.*, 1988, 26, 181.
- 4. Bohlman, F. and Mahanta, P. K., Phyto-chemistry, 1979, 18, 1067
- Gunatilaka, A. A. L., Dhanabalasingham, B., Paredes, L., Jakupovic, J., Bohlmann, F. and Adikaram, N. K. B., *Phytochemistry*, 1987, 26, 2408.
- Warning, U. and Bohlmann, F., J. Nat. Prod., 1988, 51, 513.
- Pouchert, C. J. and Campbell, J. R. (1974) In The Aldrich Library of NMR Spectra, 157–161, Aldrich Chemical Company, Inc., USA.
- Bohlmann, F., Adler, A., Schuster, A., Gupya, R. K, King, R. M. and Robinson, H., Phytochemistry, 1981, 20, 1899.
- 9. Bohlmann, F., Ziesche, J., King, R. M. and Robinson, H., Phytochemistry, 1981, 20, 1335.
- Jautelat, M., Gutzner, J. B. and Roberts, J. D., Proc. Nat. Acad. Sci., 1970, 65, 288.
- Henrick, C. A. and Jefferies, P. R., *Tetrahedron*, 1965, 21, 3219.
- 12. Bhacca, N. S. and Williams, D. H. Application of NMR Spectroscopy in Organic Chemistry, Holden-Day, San Francisco, 1964, p. 45.
- Bohlmann, F., Knauf, W., Grenz, M. and Lane, M. A., *Phytochemistry*, 1979, 18, 2040.
- Zdero, C., Bohlmann, F. and Mungai, G. M., *Phytochemistry*, 1990, 29, 2247.