

PII: S0031-9422(97)01108-4

A SESQUITERPENE FROM GARDENIA SOOTEPENSIS

VATCHARIN RUKACHAISIRIKUL,* SAM-AUNG NAOVANIT, WALTER C. TAYLOR,† WILLIAM A. BUBB‡ and PIMCHIT DAMPAWAN

Department of Chemistry, Faculty of Science, Prince of Songkhla University, Hat-yai, Songkhla, 90112, Thailand; †Department of Organic Chemistry, The University of Sydney, New South Wales, 2006, Australia; †Department of Biochemistry, The University of Sydney, New South Wales, 2006, Australia

(Received in revised form 27 October 1997)

Key Word Index—Gardenia sootepensis; Rubiaceae; sesquiterpene; guaiane; flavones; benzoic acid derivatives.

Abstract—From the twigs of *Gardenia sootepensis* a new sesquiterpene with a guaiane skeleton named sootepdienone was isolated, in addition to known flavones and benzoic acid derivatives. © 1998 Elsevier Science Ltd. All rights reserved

INTRODUCTION

The genus Gardenia Ellis consists of more than 80 species spread among the tropical forests of certain regions of the world. Seventeen species of this genus occur in Thailand [1]. One of these is G. sootepensis, local name: Kam-mok-luang, which grows only in the northern part of Thailand. Although there are a number of reports on the isolation of triterpenes [2-6], iridoid glycosides [7–13], quinic acid derivatives [8, 14-15], a keto fatty acid [16] and flavones [6, 17-24] from many Gardenia species, the chemical constituents of G. sootepensis have not been extensively investigated. The flowers were found to contain β -sitosterol, a highly conjugated diterpene carboxylic acid, 7,4'-dihydroxyflavone and long-chain aliphatic compounds [6], while the fruits contain a quinic acid lactone (quinide) [25]. In an examination of twigs, we have now isolated a new sesquiterpene together with benzoic acid, 4-hydroxy-3-methoxybenzoic acid, 4hydroxy-3,5-dimethoxybenzoic acid, 5.7,4'-trihydroxy-6-methoxyflavone [26-28] and 5,7,3'-trihydroxy-6,4',5'-trimethoxyflavone [29–31].

RESULTS AND DISCUSSION

A crude MeOH extract of the ground twigs of G. sootepensis was partitioned between 20% aq. NaOH and ether. The ether-soluble material was repeatedly chromatographed on silica gel to give compound 1.

The alkali-soluble fraction was separated into phenolic and acidic fractions which were chromatographed on silica gel. The phenolic fraction yielded 5,7,4'-trihydroxy-6-methoxyflavone and 5,7,3'-trihydroxy-6,4',5'-trimethoxyflavone. The acidic fraction afforded benzoic acid, 4-hydroxy-3-methoxybenzoic acid and 4-hydroxy-3,5-dimethoxybenzoic acid.

Compound 1, sootepdienone, was obtained as an optically active, colourless solid. Strong peaks at 3420 and 1680 cm $^{-1}$ in the IR spectrum indicated the presence of hydroxyl and unsaturated carbonyl functionalities. The UV spectrum ($\lambda_{\rm max}$ 245, 300 nm) indicated an extended conjugated system. The HRMS and $^{\rm 1}H$ and $^{\rm 13}C$ NMR data (Table 1) established the molecular formula to be $C_{1s}H_{22}O_2$. The $^{\rm 1}H$ NMR spectrum was assigned by decoupling and 2D $^{\rm 1}H^{-\rm 1}H$ COSY experiments and the $^{\rm 13}C$ NMR signals were assigned from DEPT, HMQC and GSHMBC spectra. The $^{\rm 1}H^{-\rm 1}H$ correlations enabled us to establish the following subunits.

^{*}Author to whom correspondence should be addressed.

198 Short Report

The 13 C NMR signals for quaternary carbons at $\delta_{\rm C}$ 74.4 (C-11) and 209.3 (C-3) indicated the presence of a tertiary hydroxy group and an unsaturated keto function, respectively. An olefinic proton at $\delta_{\rm H}$ 6.75 (brd, J = 1.7 Hz, H-6) in the ¹H NMR spectrum together with four signals of sp^2 carbons at δ_C 167.1 (C), 160.4 (C), 137.4 (C) and 118.2 (CH) confirmed the presence of trisubstituted and tetrasubstituted double bonds. The ¹H NMR and ¹³C NMR spectra further showed the presence of four methyl groups [δ_H 0.71 (3H, d, J = 6.6 Hz, H-14; δ_C 14.5), 1.41 (6H, s, H-12 and H-13; δ_C 28.6 and 28.8) and 1.70 (3H, d, J = 1.8Hz, H-15; δ_C 8.3], two methine groups [δ_H 3.33 (1H, m, H-1; δ_C 43.6) and 2.23 (1H, m, H-10; δ_C 32.9)] and three methylene groups [(δ_H 2.50, 1H, dd, J = 6.6 and 18.6 Hz, H-2 α ; $\delta_{\rm H}$ 2.24, 1H, dd, J=2.1 and 18.6 Hz, H-2 β ; δ_C 39.7), (δ_H 2.58, 1H, m; H-8 α ; δ_H 2.35, 1H, ddd, J = 2.7, 7.8 and 16.5 Hz, H-8 β ; δ_C 26.5) and (δ_H 2.15, 1H, m; H-9 α ; $\delta_{\rm H}$ 1.48, 1H, m; H-9 β ; $\delta_{\rm C}$ 35.1)].

The connections of the subunits were determined from GSHMBC data. The carbonyl carbon at $\delta_{\rm C}$ 209.3 showed cross peaks with Me-15 and H-2 indicating the connection of the carbonyl carbon to C-2 and C-4. The $^3J_{\rm C}$ H connection between the sp^3 secondary carbon at $\delta_{\rm C}$ 35.1 (C-9) and Me-14 revealed the link between C-9 and C-10. The quaternary hydroxylated carbon at $\delta_{\rm C}$ 74.4 (C-11) showed correlations with Me-12, Me-13 and H-6 whereas the quaternary carbon at $\delta_{\rm C}$ 160.4 (C-7) showed $^3J_{\rm C}$ H connection with Me-12

and Me-13, and H-9 α and ${}^2J_{C-H}$ connection with H-8α, H-8β. Thus, the hydroxylated carbon C-11 carries two methyl groups and links with C-7 of the trisubstituted double bond. The relative stereochemistry of 1 was determined by 1H NMR, NOE difference and NOESY spectra. Irradiation of the H-1 signal caused a strong enhancement of the H-10 signal (as well as H-2 α and H-8 α), and irradiation of Me-14 gave enhancements of H-2 β and H-8 β , suggesting that Me-14 was trans to H-1. H-1α had homoallylic coupling (J = 1.8 Hz) with Me-15 and weak ${}^4J_{\text{H-H}}$ coupling with H-6; H-8 α (quasi-axial) had strong (J = 1.7 Hz) allylic coupling with H-6, whereas H-8 β (quasi-equatorial) showed no coupling. These results are consistent with the assigned structure, 11-hydroxy-4,6-guaiadien-3one. A number of hydroxyguaiadienones have been reported from natural sources, including three with the $\Delta^{4,5}$ -guaian-3-one structure [32–34]. Nevertheless, sootepdienone represents a new member of the class.

EXPERIMENTAL

General

¹H NMR: 400 and 600 MHz, CDCl₃ solns with TMS as int. standard; ¹³C NMR: 100 and 150 MHz. Multiplicities were determined by DEPT experiments. Known compounds were identified by comparison with their reported spectroscopic data, and the pos-

Table 1. 1H NMR and 13C NMR data of compound 1

Н	δ	J (Hz)	C	δ	DEPT
1	3.33 m]	43.6	СН
2α	2.50 dd	18.6, 6.6	2	39.7	CH ₂
2β	2.24 dd	18.6, 2.1	3	209.3	C
6	6.75 brd	1.7	4	137.4	C
8α	2.58 m		5	167.1	C
8β	2.35 ddd	16.5, 7.8, 2.7	6	118.2	CH
9α	2.15 m		7	160.4	C
9β	1.48 m		8	26.5	CH,
10	2.23 m		9	35.1	CH ₂
12	1.41 s		10	32.9	CH
13	1.41 s		11	74.4	C
14	0.71 d	6.6	12	28.6	CH_3
15	$1.70 \ d$	1.8	13	28.8	CH_3
			14	14.5	CH_3
			15	8.3	CH_3

Short Report 199

ition of OMe groups confirmed by NOE difference spectra.

Plant material

Twigs of *Gardenia sootepensis* were collected from Doi Sootep, Chiang Mai, Thailand. The voucher specimen (Max 93-1139) has been deposited at the herbarium of the Department of Biology, Faculty of Science, Chiang Mai University.

Extraction and isolation

The ground dried twigs (1.45 kg) were consecutively extracted with hexane, CH₂Cl₂ and MeOH. The concentrated MeOH extract (2 g) was partitioned between 20% aq. NaOH and Et₂O. The Et₂O-soluble fraction was evaporated to dryness to give a yellow viscous oil, which was fractioned by quick CC using gradient elution: CH₂Cl₂-hexane, EtOAc-CH₂Cl₂ and MeOH-EtOAc. Frs 4 and 5, upon prep. TLC using EtOAc-CH₂Cl₂ (1:9), afforded compound 1. The aq. layer was neutralized with 20% aq. HCl and further extracted with EtOAc (3×100 ml). The combined organic extracts were concd to dryness in vacuo to afford a residue (331 mg) which was chromatographed on a column of silica gel and eluted with CH₂Cl₂hexane, EtOAc-CH₂Cl₂ and MeOH-EtOAc. The third eluate (38 mg) was then subjected to prep. TLC on silica gel using MeOH-CH₂Cl₂ (1:19) to give two bands. After eluting with EtOAc, 5,7,4'-trihydroxy-6methoxyflavone (7 mg) was obtained from the lower band. The upper band afforded 5,7,3'-trihydroxy-6,4',5'-trimethoxyflavone (10 mg). The neutral aq. layer was further acidified with 20% aq. HCl and then extracted with EtOAc. Upon evapn, the crude extract was obtained as a brown viscous oil. The oil was partially soluble in Et₂O. Chromatographic sepn of the Et₂O-soluble fraction afforded benzoic acid, 4hydroxy-3-methoxybenzoic acid and 4-hydroxy-3,5dimethoxybenzoic acid.

Compound 1

Colourless solid, mp 47–50°. [α]_D²⁰ +12° (c. 0.1 CHCl₃). IR (CHCl₃) ν_{max} 3240, 1680 cm⁻¹; UV λ_{max} EtOH nm (ϵ) 245 (5900), 296 (10,500); ¹H NMR and ¹³C NMR (CDCl₃): Table 1; MS, m/z (rel. int.); 234 [M⁺] (11.5), 219 (13.1), 216 (26.2), 173 (15.5), 43 (100): HRMS Calc. for $C_{15}H_{22}O_2$ 234.1620; Found: 234.1612.

Acknowledgements—We thank J. F. Maxwell, Department of Biology, Faculty of Science, Chiang Mai University, for collecting and identifying the plant material. This work was supported by a grant from the International Foundation of Science.

REFERENCES

- Suvatti, C., in Flora of Thailand, Vol. 2, Royal Institute, Bangkok, 1978.
- 2. Davies, N. W., Miller, J. M., Naidu, R. and Sotheeswaran, S., *Phytochemistry*, 1992, 31, 159.
- 3. Reddy, G. C. S., Ayengar, K. N. N. and Rangaswami, S., *Phytochemistry*, 1975, **14**, 307.
- Reddy, G. C. S., Ayengar, K. N. N. and Rangaswami, S., Phytochemistry, 1973, 12, 1831.
- Reddy, G. C. S., Ayengar, K. N. N. and Rangaswami, S., *Indian Journal of Chemistry*, 1975, 13, 749.
- 6. Liang, H., Zheng, H. and Chen S., Yunnan Zhiwu Yanjin, 1991, 13, 95.
- 7. Watanabe, N., Nakajima, R., Watanabe, S., Moon, J., Inagaki, J., Sakata, K., Yagi, A. and Ina, K., *Phytochemistry*, 1994, 37, 457.
- 8. Nishizawa, M., Izuhara, R., Kaneko, K., Koshihara, Y. and Fujimoto, Y., *Chemical and Pharmaceutical Bulletin*, 1988, 36, 87.
- 9. Takeda, Y., Nishimura, H., Kadota, O. and Inouye, H., Chemical and Pharmaceutical Bulletin, 1976, 24, 2644.
- Inouye, H., Takeda, Y. and Nishimura, H., Phytochemistry, 1974, 13, 2219.
- 11. Endo, T. and Taguchi, H., Chemical and Pharmaceutical Bulletin, 1970, 18, 1066.
- Inouye, H., Saito, S. and Shigu, T., *Tetrahedron Letter*, 1970, 41, 3581.
- Inouye, H., Saito, S., Taguchi, H. and Endo, T., Tetrahedron Letter, 1969. 28, 2347.
- Nishizawa, M., Izuhara, R., Kaneko, K. and Fujimoto, Y., Chemical and Pharmaceutical Bulletin, 1987, 35, 2133.
- 15. Nishizawa, M. and Fujimoto, Y., Chemical and Pharmaceutical Bulletin, 1986, 34, 1419.
- Mahmood, C., Daulatabad, J. D., Mulla, G. M. M., Mirajkar, A. M. and Hosamami, K. M., Phytochemistry, 1991, 30, 2399.
- 17. Gunatilaka, A., Sirimanne, S., Sotheeswaran, S. and Sriyana, H., *Phytochemistry*, 1982, **21**, 805.
- Chhabra, S. C., Gupta, S. R., Sharma, C. S. and Sharma, N. D., *Phytochemistry*, 1977, 16, 1109.
- Chhabra, S. C., Gupta, S. R. and Sharma, N. D., Phytochemistry, 1977, 16, 399.
- Chhabra, S. C., Gupta, S. R., Seshadri, T. R. and Sharma, N. D., *Indian Journal of Chemistry*, 1976, 14B, 651.
- Gupta, S. R., Seshadri, T. R., Sharma, C. S. and Sharma, N. D., *Indian Journal of Chemistry*, 1975, 13, 785.
- Krishnamurti, M., Seshadri, T. R. and Sharma,
 N. D., Indian Journal of Chemistry, 1972, 10, 23.
- Krishnamurti, M., Seshadri, T. R. and Sharma,
 N. D., Indian Journal of Chemistry, 1971, 9, 189.
- Rao, R., Venkataraman, K., Chakrabarti, P., Sanyal, A. K. and Bose, P. K., *Indian Journal of Chemistry*, 1970, 8, 398.
- 25. Wang, G., Zhao, S., Chen, D., Yang, L., Wu, N.

200 Short Report

and Zheng, Q., Journal of Structural Chemistry, 1996, 15, 400.

- 26. Bacchi, M. and Carrier, M., *Planta Medica*, 1980, **38**, 267.
- 27. Mues, R., Timmermann, B. N., Oho, N. and Mabry, T. J., *Phytochemistry*, 1979, **18**, 1379.
- 28. Liu, H., Ho, D. K. and Cassady, J. M., *Journal of Natural Products*, 1992, **55**, 357.
- 29. Marco J. A., Barbera, O., Rodriguez, S., Domingo, C. and Adell, J., *Phytochemistry*, 1988, 27, 3155.
- 30. Liu, Y. and Mabry, T. J., *Phytochemistry*, 1982, **21**, 209.
- 31. Liu, Y. and Mabry, T. J., *Phytochemistry*, 1981, **20**, 309.
- 32. Singh, P. and Suri, A., *Phytochemistry*, 1990, **29**, 3944.
- Zdero, C., Bohlmann, F., Solomon, J. C., King R. M. and Robinson, H., *Phytochemistry*, 1989, 28, 531
- 34. Bohlmann, F., Zdero, C., King, R. M. and Robinson, H., *Phytochemistry*, 1983, 22, 1201.