

PH: S0031-9422(97)01038-8

MOSCHATINE: AN UNUSUAL STEROIDAL GLYCOSIDE FROM CENTAUREA MOSCHATA

SATYAJIT D. SARKER, LAURENCE DINAN,* VLADIMIR ŠIK† and HUW H. REES!

Department of Biological Sciences, University of Exeter, Hatherly Laboratories, Prince of Wales Road, Exeter, Devon, EX4 4PS, U.K.; † Department of Chemistry, University of Exeter, Stocker Road, Exeter, Devon, EX4 4QD, U.K.; † School of Biological Sciences, The University of Liverpool, Life Sciences Building, Crown Street, Liverpool, L69 7ZB, U.K.

(Received 4 August 1997)

Key Word Index—Centaurea moschata; Compositae; moschatine; steroidal glycoside; pregnane.

Abstract—High-performance liquid chromatographic analysis of the seeds of *Centaurea moschata* has afforded a novel steroidal glycoside: moschatine [(20*S*)-20-{6-O-(3-methoxy-4- α -L-rhamnopyranosyloxybenzoyl)- β -D-glucopyranosyloxy}-15 α -hydroxy-8 β ,9 α ,14 α ,17 α -pregn-4-en-3-one]. The structure of this compound was elucidated by a combination of UV, LSIMS, and a series of 1D and 2D NMR spectral analyses. © 1998 Elsevier Science Ltd. All rights reserved

INTRODUCTION

Centaurea moschata L. (common name: 'Sweet Sultan') is an easily grown, green, glabrous, oriental annual from the genus Centaurea which comprises ca 500 species, mainly from the Old World [1]. As many species of this genus fall into the category of medicinal plants [2, 3], they have been the object of numerous phytochemical investigations leading to the isolation and identification of a variety of plant secondary metabolites [3, 4]. We have reported earlier, the presence of four indole alkaloids (moschamine, cis-moschamine, moschamindole and moschamindolol) [4], and phytoecdysteroids [5] as major constituents, and (20R)-15 α -hydroxypregn-4-en-3-one-20-O- β -Dglucopyranoside as a minor [6] component in the seeds of C. moschata. We have re-investigated this species and we now report on the isolation and identification of a further novel steroidal glycoside.

RESULTS AND DISCUSSION

RP-HPLC analysis of a methanol extract of the seeds of *Centaurea moschata* L. yielded a new steroidal glycoside: (20S)-20- $\{6$ -O-(3-methoxy-4- α -L-rhamnopyranosyloxybenzoyl) - β - D - glucopyranosyloxy $\}$ - 15α -hydroxy- 8β , 9α , 14α , 17α -pregn-4-en-3-one (1). named moschatine. The structure of this compound

was determined by 1D and 2D NMR spectroscopy, notably ¹H, ¹³C PENDANT [7], COSY45, NOESY, HMBC [8] and HMQC.

The UV absorption maxima (log ε) of 1 at 246 (4.10), 255 (4.02), 290 (3.97) nm suggested the presence of an α,β -unsaturated carbonyl group and substituted benzene moiety within the molecule. LSI mass spectrum revealed $[M + H]^+$ (positive ion mode) ion at m/z791, suggesting $M_r = 790$ and solving for $C_{41}H_{58}O_{15}$. Analysis of the ¹H NMR, ¹H-¹H COSY45, and ¹³C PENDANT spectra (Table 1), along with a ¹H-¹³C HMQC spectrum indicated the presence of a glucose unit, a rhamnose unit, a 3,4-dioxygenated benzoyl group, a methoxy and a 20,15-dioxygenated pregn-4en-3-one moiety in the molecule. A doublet at $\delta_{\rm H}$ 4.38 $(J = 7.8 \text{ Hz}) (\delta_{\text{C}} 99.7)$ integrated for a single proton identified the glucose anomeric proton, from which a H-H COSY45 spectrum enabled identification of the connection of H-2g to H-6g of the glucose unit and suggested it as β -D-glucose which was further confirmed from the observed NOE: $H-1_g \leftrightarrow H-3_g$, $H-1_g \leftrightarrow H-3_g$ $l_g \leftrightarrow H-5_g$ and $H-2_g \leftrightarrow H-4_g$ in the H-H NOESY spectrum (Fig. 1). The rhamnose moiety [anomeric signal: $\delta_{\rm H}$ 5.47 (J=1.5 Hz), $\delta_{\rm C}$ 99.4] could easily be identified from the occurrence of a 3H doublet at $\delta_{\rm H}$ 1.22 (J = 6.2 Hz) for the methyl group (C-6_r), and from analysis of ¹H-¹H COSY and NOESY spectra it was further identified as α-L-rhamnose. From the ¹H and 13C PENDANT spectra, ortho, ortho-meta and meta-splitting of the aromatic protons, oxygenations at C-3' and C-4', and carboxy group at C-1' could be rationalised. The attachment of the methoxy group at C-3' was confirmed from the H-BC long-range

^{*}Author to whom correspondence should be addressed. Tel: [44]-1392-264605: Fax: [44]-1392-264668: E-mail: L.N.Dinan@exeter.ac.uk

HMBC correlation (Table 2) between the methoxy protons (δ_H 3.88) and C-3' (δ_C 150.1), and also from the strong NOE between this methoxy signal and H-2' $(\delta_{\rm H}$ 7.63) (Fig. 1). Similarly, the presence of a carboxyl group at C-1' was confirmed from the HMBC where both H-2' and H-6' ($\delta_{\rm H}$ 7.65) showed ³J correlations to the carbonyl carbon (C-7', $\delta_{\rm C}$ 166.1). In addition to the signals for glucose, rhamnose and 3-methoxy-4oxy benzoyl moieties, the ¹H NMR provided the distinct signals for three methyls, one of which appeared as a doublet ($\delta_{\rm H}$ 1.07, J=6.1 Hz), an olefinic proton at $\delta_{\rm H}$ 5.66, two oxymethine protons at $\delta_{\rm H}$ 3.85 and $\delta_{\rm H}$ 3.80, and a number of overlapped complex signals for the methylene and methine protons. The ¹³C PEN-DANT spectrum showed signals for 21 additional carbons including a ketonic carbonyl (δ_C 201.1), an olefinic quaternary (δ_C 174.2), two quaternaries, three methyls, seven methylenes and seven methine carbons including an olefinic methine (δ_C 122.40 and two oxymethines (δ_C 72.8 and δ_C 74.2). All the ¹H resonances for the steroidal moiety were comparable to those published for the compound (20R)- 15α , 20β -dihydroxypregn-4-en-3-one 20-O-β-D-glucopyranoside [6], with the most notable exceptions being the signals for Me-18 ($\delta_{\rm H}$ 0.67) and Me-19 ($\delta_{\rm H}$ 1.00) which were much more shielded than the published values ($\delta_{\rm H}$ 0.89 and 1.27, respectively) which implied S-stereochemistry at C-20 [9]. This was further evident from the strong NOE between the Me-18 and H-20 ($\delta_{\rm H}$ 3.80) which confirmed the presence of H-20 at the β face of the molecule. In the COSY45 spectrum, among the major correlations, the Me-21 coupled to the proton at $\delta_{\rm H}$ 3.80, which again extended the couplings to the protons on C-17 \leftrightarrow C-16 \leftrightarrow C-15 \leftrightarrow C-14 and thus confirmed the presence of a hydroxyl on C-15. The α orientation of the 15-OH was also determined from the NOE between Me-18 and H-15 ($\delta_{\rm H}$ 3.85) both of which were in β -orientation. The identity of the steroidal moiety was confirmed by 1H-13C HMBC (Table 2). Among the ¹H-¹³C long-range correlations the most notable were: from Me-21 ($\delta_{\rm H}$ 1.07) to C-20 $(^2J, \delta_{\rm C}$ 74.2) and C-17 $(^3J, \delta_{\rm C}$ 53.6); from Me-18 $(\delta_{\rm H}$ 0.67), ${}^{2}J$ to C-13 ($\delta_{\rm C}$ 42.7) and ${}^{3}J$ to C-17, C-12 ($\delta_{\rm C}$ 38.7), C-14 ($\delta_{\rm C}$ 60.8); from H-14 ($\delta_{\rm H}$ 0.95), 2J to C-15 $(\delta_C 72.8)$ and 3J to C-7 $(\delta_C 32.1)$, C-12, C-17, C-18 $(\delta_C 32.1)$ 11.8); from Me-19 ($\delta_{\rm H}$ 1.00), 3J to C-5 ($\delta_{\rm C}$ 174.2), and from the methylene protons at C-1 and C-2 ($\delta_{\rm H}$ 1.60, 1.80 and 2.25, 2.45, respectively to the carbonyl (C-3, δ_c 201.1). Thus, the steroidal moiety was identified as (20S)- 20β -oxy- 15α -hydroxypregn-4-en-3-one. The positions of linkage between the glucose, rhamnose, 3-methoxy-4-oxybenzoyl and steroid moieties, which led to the identification of this compound as 1, were also determined by 'H-13C long-range correlations

Table 1. 1 H (400 MHz) and 13 C PENDANT NMR data of 1. (Coupling constant J = Hz. in parentheses)

Carbon no.	$\delta^{\scriptscriptstyle 1}$ H	δ^{13} C	
1	1.60*, 1.80*	37.5	
2	2.25*. 245*	33.4	
3α		201.1	
4	5.66 s	122.4	
5		174.2	
6	2.25*, 2.45*	32.6	
7	1.22*, 2.15*	32.1	
8β	1.55*	35.0	
9α	0.86*	54.2	
10	× 1000000	38.6	
11	0.90*, 1.50*	20.4	
12	2.18*, 1.05*	38.7	
13	= 10000 MA	42.7	
14α	0.95 dd (9.4)	60.8	
15β	3.85*	72.8	
16	1.85*, 1.45*	35.2	
17α	1.75*	53.6	
18 (Me)	0.67 s	11.8	
19 (Me)	1.00 s	16.3	
20β	3.80*	74.2	
21 (Me)	1.07 d(6.1)	16.6	
1'		124.6	
2'	7.63 d(2.0)	113.1	
		150.1	
4°		149.9	
51	7.23 d (8.3)	116.4	
6′	7.65 dd (2.0, 8.3)	123.0	
7'		166.1	
3'-MeO	3.88 s	55.2	
1,	4.38 d (7.8)	99.7	
2 _g	3.15 dd (7.8, 9.0)	74.0	
- ₂ 3 _e	3.38 bt (8.9)	76.5	
4 _g	3.55*	70.1	
5 _g	3.52*	72.2	
6 _g a	4.68 d (11.7)	62.8	
6gb	4.40 dd (11.7, 1.0)		
l _r	5.47 d (1.5)	99.4	
2 _r	4.06 dd (1.5, 3.4)	70.6	
3 _r	3.85*	70.8	
4 _r	3.48 t (9.5)	73.3	
5,	3.70*	69.7	
6, (Me)	1.22 d (6.2)	17.6	
or (IVIC)	1.22 (0.2)	17.0	

Spectra obtained in CD₃OD referenced to CH₃OH at δ 3.31 (1 H) and δ 49.15 (13 C).

observed in the HMBC spectrum as follows: 3J correlation from H-1_g ($\delta_{\rm H}$ 4.38) to C-20 ($\delta_{\rm C}$ 74.2) confirmed the attachment of the glucose moiety at C-20, 3J connectivity between H-6_g ($\delta_{\rm H}$ 4.68, 4.40) to the carbonyl carbon of the benzoyl moiety (C-7′, $\delta_{\rm C}$ 166.1) established that the benzoyl moiety was linked to C-6_g; similarly. 3J correlation from H-1_g ($\delta_{\rm H}$ 5.47) to C-

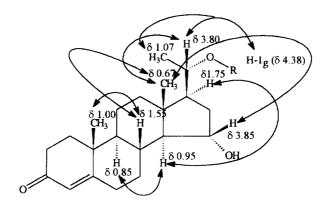
4′ (δ_C 149.9) confirmed the attachment of the rhamnose at C-4′ of the benzoyl group. All these attachments were also supported from the following NOEs: H-1_g \leftrightarrow H-20, H-1_g \leftrightarrow 21-Me, and H-1_r \leftrightarrow 3′-MeO (weak). Apart from these NOE features, a NOESY spectrum established unambiguously the different spatial orientations of the protons in the molecule as a whole. Thus, the structure of this compound was unequivocally identified as (20*S*)-20-{6-*O*-(3-methoxy-4-α-L-rhamnopyranosyloxybenzoyl)-β-D-glucopyranosyloxy}-15α-hydroxy-8β,9α.14α,17α-pregn-4-en-3-one (1).

The R-form of the aglycone of 1, (20R)- 15α , 20β dihydroxypregn-4-en-3-one, was first isolated from the defence secretion of the water beetle Platambus maculatus [10]. A glucoside of (20R)- 15α , 20β -dihydroxypregn-4-en-3-one was isolated from Carthamus tinctorus [11] and Centaurea moschata [6]. Most plant steroids have a hydroxyl group at C-3 like 2, whereas compound 1, having a 3-keto- Δ^4 structure, is more closely related to animal steroids e.g. progesterone analogues. However, progesterone has also been found in plants and, although not very common, there are reports concerning other plant steroids possessing a 3-keto group [11, 12]. The extract from which this steroidal glycoside was isolated was very active in a bioassay [13] for ecdysteroid agonists. However, moschatine is not responsible for this activity.

EXPERIMENTAL

The UV spectrum was in MeOH. NMR spectra were obtained on a Bruker AVANCE DRX400 instrument using standard Bruker microprograms. The chemical shifts are expressed in ppm. LSIMS (positive ion mode); glycerol matrix using a Cs⁺ primary ion beam on a VG Quattro triple quadrupole mass spectrometer (VG Biotech. Altrincham, U.K.). HPLC separations were performed on a Gilson model 802C HPLC coupled with Gilson UV-Visible detector. RP stands for reversed-phase. Preparative RP-HPLC was performed on Technoprep 10 C₈ column and final purification was done on Spherisorb C₆ semi-preparative column. HPLC separations were monitored at 242 nm.

Plant material


Seeds of *Centaurea moschata* L. were purchased from Chiltern Seeds, Ulverston, U.K.

Extraction

Ground seeds (11 g) were extracted in a Soxhlet with, successively, *n*-hexane, CHCl₃ and MeOH, 500

¹H chemical shifts of methylene protons = former value is for α and the latter is for β orientation.

^{*} Assignments obtained from COSY45.

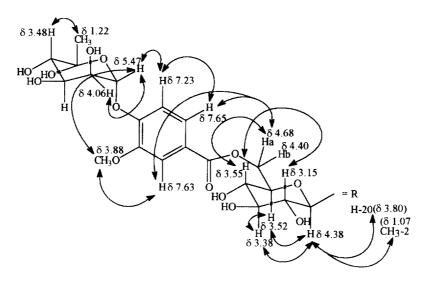


Fig. 1. Key NOE from ¹H-¹H NOESY spectrum.

ml each. The MeOH extract was concentrated using a rotary evaporator at a maximum temperature of 45.

Isolation of compounds

Preparative RP-HPLC with 55% MeOH- H_2O at 5 ml min⁻¹ yielded 1 (26–36 min) as a broad UV-absorbing peak. Compound 1 was further purified on C_6 semipreparative column, eluted with 45% MeOH- H_2O , 2 ml min⁻¹ ($R_i = 35$ min).

Bioassay

Ecdysteroid agonist and antagonist activities of 1 were assessed with a microplate-based bioassay using

the *Drosophila melanogaster* B_{II} cell line [13]. Compound 1 was tested at concentrations ranging from 10^{-8} M -10^{-4} M. for the antagonist assay, a concentration of 20-hydroxyecdysone of 5×10^{-8} M was used.

Moschatine A [(20S)-20{6-O-(3-methoxy-4-α-L-rhamnopyranosyloxybenzoyl)-β-D-glucopyranosyloxy}-15α-hydroxy-8β,9α,14α,17α-pregn-4-en-3-one] (1). (1.2 mg). Gum. UV_{max}^{i} nm (log ε): 218 (4.30), 246 (4.10), 255 (4.02), 290 (3.97). ¹H NMR (Table 1). ¹³C NMR (Table 1). LSIMS (positive ion mode) m/z 791 [M+H]⁺.

Acknowledgements—This research was supported by a grant from the Biotechnology and Biological Sciences Research Council. Dr Tamara Savchenko and Pensri Whiting are thanked for valuable assistance with the bioassay.

Table 2. H-13C HMQC direct correlation (J) and major H-13C HMBC long-range correlations (J and J) in 1

Proton	$\delta^{ ext{\tiny 1}^{2}}C$			
		² J	3J	
H ₂ -1	37.5 (C-1)		201.1 (C-3), 54.2 (C-9),	
H ₂ -2	33.4 (C-2)	201.1 (C-3)		
H-4	122.4 (C-4)		33.4 (C-2), 32.6 (C-6), 38.6 (C-10)	
H_2-6	32.6 (C-6)			
H ₂ -7	32.1 (C-7)			
H-8	35.0 (C-8)			
H-9	54.2 (C-9)		37.5 (C-1), 38.7 (C-12), 16.3 (C-19), 60.8 (C-14)	
H ₂ -11	20.4 (C-11)	54.2 (C-80	42.7 (C-13)	
H ₂ -12	38.7 (C-12)	20.4 (C-11)	54.2 (C-8), 60.8 (C-14), 53.6 (C-17)	
H-14	60.8 (C-14)	35.0 (C-8), 42.7 (C-13), 72.8 (C-15)	32.1 (C-7), 38.7 (C-12), 53.6 (C-17), 11.8 (C-18)	
H_2-15	72.8 (C-15)		53.6 (C-17)	
H ₂ -16	35.2 (C-16)			
H-17	53.6 (C-17)			
Me-18	11.8 (C-18)	42.7 (C-13)	38.7 (C-12), 60.8 (C-14), 53.6 (C-17)	
Me-19	16.3 (C-19)	38.6 (C-10)	174.2 (C-5)	
H-20	74.2 (C-20)	53.6 (C-17)	, ,	
Me-21	16.6 (C-21)	74.2 (C-20)	53.6 (C-17)	
H-2'	113.1 (C-2')		150.1 (C-3'), 123.0 (C-6'), 166.1 (C-7')	
H-5'	116.4 (C-5')		124.6 (C-1'), 150.1 (C-3')	
H-6'	123.0 (C-6')		113.1 (C-2'), 149.9 (C-4'), 166.1 (C-7')	
MeO-3'	55.2 (MeO-3')		150.1 (C-3')	
H-lg	99.7 (C-1 _g)		74.2 (C-20), 76.5 (C-3 $_{g}$), 72.2 (C-5 $_{g}$)	
H-2 _e	74.0 (C-2 _e)	99.7 (C-1 _e), 76.5 (C-3 _e)	70.1 (C-4 _a)	
H-3 _g	76.5 (C-3 _g)	70.1 (C-4 _e)	99.7 (C-1 _e), 72.2 (C-5 _e)	
H-4g	70.1 (C-4 _g)	76.5 (C-3 _e)	$74.0 (C-2_{g})$	
H-5,	72.2 (C-5 _g)	. •	76.5 (C-3 _g)	
H ₂ -6 _e	62.8 (C-6 _g)		70.1 (C-4 ₂), 166.1 (C-7')	
$H-1_r$	99.4 ($C-1_r$)	$70.6 (C-2_i)$	$69.7 \text{ (C-5}_r)$, 149.9 (C-4') , $70.8 \text{ (C-3}_r)$	
H-2,	$70.6 (C-2_r)$	70.8 (C-3 _r)	73.3 (C-4 _r)	
H-3,	$70.8 \text{ (C-3}_{r})$	70.6 (C-2 _r)	··	
H-4 _r	73.3 (C-4 _r)	70.8 (C-3 _r)	$70.6 (C-2_r), 17.6 (C-6_r)$	
H-5,	69.7 (C-5 _r)		$70.8 (C-3_r)$	
Me-6 _r	17.6 (C-6 _r)	69.7 (C-5 _r)	$73.3 (C-4_r)$	

Spectra obtained in CD₃OD.

REFERENCES

- Bailey, L. H., Manual of Cultivated Plants, Macmillan, New York, 1977, p. 1027.
- Monya, M. and Racz, G., Plant Med. et Phytother., 1974, 8, 126.
- Kaij-a-Kamb, M., Amoros, M. and Girre, L., Pharm. Acta Helv., 1992, 67, 178.
- 4. Sarker, S. D., Savchenko, T., Whiting, P., Šik, V. and Dinan, L. N., Nat. Prod. Letts., 1997, 9, 189.
- Sarker, S. D., Savchenko, T., Whiting, P., Šik, V., Lafont, R. and Dinan, L., *Biochem. Syst. Ecol.*, 1997, 25, 367.
- 6. Sarker, S. D., Girault, J.-P., Lafont, R. and Dinan, L., *Int. J. Pharmacognosy*, (in press).

- 7. Homer, J. and Perry, M. C., J. Chem. Soc., Chem. Commun., 1994, 373.
- Bax, A. and Summers, M. F. J. Am. Chem. Soc., 1986, 108, 2093.
- 9. Lee, H. and Wolf, M. E., *J. Org. Chem.*, 1967, **32**, 192.
- 10. Schildknecht, H., Tachei, H. and Maschwitz, U., *Die Naturwissenschaften*, 1969, **56**, 37.
- Palter, R., Lundin, R. E. and Fuller, G., *Phytochemistry*, 1972, 11, 822.
- 12. Geuns, J. M. C., Phytochemistry, 1978, 17, 1.
- Clément, C. Y., Bradbrook, D. A., Lafont, R. and Dinan, L., Insect Biochem. Mol. Biol., 1993, 23, 187.